A151788 Partial sums of A151787.
1, 4, 7, 13, 16, 22, 28, 40, 43, 49, 55, 67, 73, 85, 97, 121, 124, 130, 136, 148, 154, 166, 178, 202, 208, 220, 232, 256, 268, 292, 316, 364, 367, 373, 379, 391, 397, 409, 421, 445, 451, 463, 475, 499, 511, 535, 559, 607, 613, 625, 637, 661, 673, 697, 721, 769, 781, 805
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 30.
Crossrefs
Cf. A151787.
Programs
-
Maple
wt:= n -> convert(convert(n,base,2),`+`): ListTools:-PartialSums([1,seq(3*2^(wt(n-1)-1),n=2..100)]); # Robert Israel, Feb 27 2018
-
Mathematica
b[n_] := If[n == 1, 1, 3*2^(Total[IntegerDigits[n-1, 2]]-1)]; Array[b, 100] // Accumulate (* Jean-François Alcover, Mar 27 2019 *)
-
PARI
b(n) = if (n==1, 1, 3*2^(hammingweight(n-1)-1)); a(n) = sum(k=1, n, b(k)); \\ Michel Marcus, Feb 27 2018
Formula
G.f. g(x) satisfies g(x) = (2+1/x)*(1+x)*g(x^2) + x^2/(1-x). - Robert Israel, Feb 27 2018