A151881 Sum (number of cycles)^2 over all n! permutations of [1..n].
1, 5, 23, 120, 724, 5012, 39332, 345832, 3371976, 36135792, 422379792, 5349561984, 72996193152, 1067779243008, 16670798231040, 276718772067840, 4866610479828480, 90401487246167040, 1768784607499944960, 36360467544043008000, 783508616506603008000
Offset: 1
Keywords
Links
- N. J. A. Sloane and Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 30 terms from N. J. A. Sloane)
Programs
-
Maple
with(combinat): with(numtheory): M:=30; for n from 1 to M do p:=partition(n); s:=0: for k from 1 to nops(p) do # get next partition of n # convert partition to list of sizes of parts q:=convert(p[k], multiset); for i from 1 to n do a(i):=0: od: for i from 1 to nops(q) do a(q[i][1]):=q[i][2]: od: # get number of parts: nump := add(a(i), i=1..n); # get multiplicity: c:=1: for i from 1 to n do c:=c*a(i)!*i^a(i): od: prop:=nump^2; s:=s + (n!/c)*prop; od; lprint(n, s); A[n]:=s; od: [seq(A[n], n=1..M)]; # Alternatively after Reshetnikov: a := n -> n!*(add(1/k,k=1..n)^2 + add(1/k-1/k^2,k=1..n)): seq(a(n), n=1..19); # Peter Luschny, Oct 21 2015
-
Mathematica
Table[-Coefficient[CharacteristicPolynomial[ Array[KroneckerDelta[#1, #2]((((#1+1)))-1)+1&,{n,n}],x],x], {n,1,10}] (* John M. Campbell, May 24 2011 *) Table[n! (HarmonicNumber[n] + HarmonicNumber[n]^2 - HarmonicNumber[n, 2]), {n, 1, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
Formula
a(n) = (-1)^(n+1)*(Stirling1(n+1,2)-2*Stirling1(n+1,3)). - Vladeta Jovovic, Jul 22 2009
a(n) = n!*(H(n)+H(n)^2-H2(n)), where H(n)=sum(k=1..n,1/k), H2(n)=sum(k=1..n,1/k^2). - Vladimir Reshetnikov, Oct 20 2015
E.g.f.: (log(1-x)^2-log(1-x))/(1-x). - Vladimir Reshetnikov, Oct 20 2015
a(n) = Sum_{k=0..n} |Stirling1(n,k)|*k^2. - Peter Luschny, Jan 14 2020
Comments