A151895
Number of ON cells after n generations of the cellular automaton on the square grid that is described in the Comments.
Original entry on oeis.org
0, 1, 5, 9, 13, 25, 29, 41, 53, 65, 85, 97, 117, 145, 149, 161, 173, 185, 213, 233, 261, 297, 333, 385, 429, 481, 533, 545, 573, 601, 629, 673, 717, 761, 837, 905, 989, 1033, 1085, 1145, 1197, 1257, 1309, 1337, 1397, 1457, 1525, 1625, 1669
Offset: 0
- D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191.
- David Applegate, Table of n, a(n) for n = 0..250
- David Applegate, The movie version
- David Applegate, Illustration of first 10 generations
- David Applegate, Illustration of first 20 generations
- David Applegate, Illustration of first 32 generations
- David Applegate, Illustration of first 64 generations
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.], which is also available at arXiv:1004.3036v2
- R. G. Schrandt and S. M. Ulam, On recursively defined geometric objects and patterns of growth [Link supplied by Laurinda J. Alcorn, Jan 09 2010.]
- N. J. A. Sloane, Illustration of initial terms (concentrating on a 90-degree sector)
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 [Annotated scanned copy]
Original entry on oeis.org
0, 1, 5, 9, 13, 25, 29, 33, 45, 57, 69, 105, 109, 113, 125, 137, 149, 185, 197, 209, 245, 281, 317, 425, 429, 433, 445, 457, 469, 505, 517, 529, 565, 601, 637, 745, 757, 769, 805, 841, 877, 985, 1021, 1057, 1165, 1273, 1381, 1705, 1709, 1713, 1725, 1737, 1749, 1785, 1797
Offset: 0
- S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
A151906
a(0) = 0, a(1) = 1; for n>1, a(n) = 8*A151905(n) + 4.
Original entry on oeis.org
0, 1, 4, 4, 4, 12, 4, 4, 12, 12, 12, 36, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 12, 12, 36, 36, 36, 108, 36, 36, 108, 108, 108, 324, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 12, 12, 36, 36, 36, 108, 36, 36, 108, 108, 108
Offset: 0
From _Omar E. Pol_, Apr 02 2018: (Start)
Note that this sequence also can be written as an irregular triangle read by rows in which the row lengths are the terms of A011782 multiplied by 3, as shown below:
0,1, 4;
4,4,12;
4,4,12,12,12,36;
4,4,12,12,12,36,12,12,36,36,36,108;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,324;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,... (End)
- S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
-
f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
wt := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
A151904 := proc(n) local k,j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
A151905 := proc (n) local k,j;
if (n=0) then 0;
elif (n=1) then 1;
elif (n=2) then 0;
else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
end;
A151906 := proc(n);
if (n=0) then 0;
elif (n=1) then 1;
else 8*A151905(n) + 4;
fi;
end;
-
wt[n_] := DigitCount[n, 2, 1];
f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]];
A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]];
A151904[n_] := (3^A151902[n] - 1)/2;
A151905[n_] := Module[{k, j}, Switch[n, 0, 0, 1, 1, 2, 0, _, k = Floor[Log2[n/3]]; j = n - 3*2^k; A151904[j]]];
a[n_] := Switch[n, 0, 0, 1, 1, _, 8 A151905[n] + 4];
Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 16 2023, after Maple code *)
A170896
Number of ON cells after n generations of the Schrandt-Ulam cellular automaton on the square grid that is described in the Comments.
Original entry on oeis.org
0, 1, 5, 9, 13, 25, 29, 41, 53, 65, 85, 97, 117, 145, 157, 169, 181, 201, 229, 249, 285, 321, 365, 409, 445, 497, 549, 577, 605, 633, 669, 713, 757, 825, 893, 969, 1045, 1105, 1173, 1241, 1309, 1377, 1437, 1473, 1541, 1609, 1693, 1793, 1869, 1945, 2037, 2105, 2189, 2281, 2381, 2521, 2621, 2753, 2869, 2969, 3053, 3129, 3237, 3377, 3485, 3585, 3685, 3817, 3909
Offset: 0
- D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191.
- David Applegate, Table of n, a(n) for n = 0..260 (corrected by Sean A. Irvine)
- David Applegate, The movie version
- David Applegate, After 20 generations, illustrating a(20)=285 (with the A170897(20)=36 newly created cells shown in blue)
- David Applegate, After 26 generations, illustrating a(26)=549 (with the A170897(26)=52 newly created cells shown in blue)
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- Sean A. Irvine, Java program (github)
- R. G. Schrandt and S. M. Ulam, On recursively defined geometric objects and patterns of growth [Link supplied by Laurinda J. Alcorn, Jan 09 2010.]
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021
- S. M. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962 [Annotated scanned copy]
A151905
a(0) = a(2) = 0, a(1) = 1; for n >= 3, n = 3*2^k+j, 0 <= j < 3*2^k, a(n) = A151904(j).
Original entry on oeis.org
0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 4, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13
Offset: 0
If written as a triangle:
0,
1, 0,
0, 0, 1,
0, 0, 1, 1, 1, 4,
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13,
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40
0, 0, 1, 1, 1, 4, 1, 1, 4, 4, 4, 13, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 1, 1, 4, 4, 4, 13, 4, 4, 13, 13, 13, 40, 4, 4, 13, 13, 13, 40, 13, 13, 40, 40, 40, 121,
...
then the rows converge to A151904.
- S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.
-
f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
wt := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
A151904 := proc(n) local k,j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
A151905 := proc (n) local k,j;
if (n=0) then 0;
elif (n=1) then 1;
elif (n=2) then 0;
else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
end;
-
wt[n_] := DigitCount[n, 2, 1];
f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]];
A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]];
A151904[n_] := (3^A151902[n] - 1)/2;
a[n_] := Module[{k, j}, Switch[n, 0, 0, 1, 1, 2, 0, _, k = Floor[Log2[n/3]]; j = n - 3*2^k; A151904[j]]];
Table[a[n], {n, 0, 90}] (* Jean-François Alcover, Feb 16 2023, after Maple code *)
Showing 1-5 of 5 results.
Comments