cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151906 a(0) = 0, a(1) = 1; for n>1, a(n) = 8*A151905(n) + 4.

Original entry on oeis.org

0, 1, 4, 4, 4, 12, 4, 4, 12, 12, 12, 36, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 12, 12, 36, 36, 36, 108, 36, 36, 108, 108, 108, 324, 4, 4, 12, 12, 12, 36, 12, 12, 36, 36, 36, 108, 12, 12, 36, 36, 36, 108, 36, 36, 108, 108, 108
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jul 31 2009, Aug 03 2009

Keywords

Comments

Consider the Holladay-Ulam CA shown in Fig. 2 and Example 2 of the Ulam article. Then a(n) is the number of cells turned ON in generation n.

Examples

			From _Omar E. Pol_, Apr 02 2018: (Start)
Note that this sequence also can be written as an irregular triangle read by rows in which the row lengths are the terms of A011782 multiplied by 3, as shown below:
0,1, 4;
4,4,12;
4,4,12,12,12,36;
4,4,12,12,12,36,12,12,36,36,36,108;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,324;
4,4,12,12,12,36,12,12,36,36,36,108,12,12,36,36,36,108,36,36,108,108,108,... (End)
		

References

  • S. Ulam, On some mathematical problems connected with patterns of growth of figures, pp. 215-224 of R. E. Bellman, ed., Mathematical Problems in the Biological Sciences, Proc. Sympos. Applied Math., Vol. 14, Amer. Math. Soc., 1962.

Crossrefs

Programs

  • Maple
    f := proc(n) local j; j:=n mod 6; if (j<=1) then 0 elif (j<=4) then 1 else 2; fi; end;
    wt := proc(n) local w,m,i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end;
    A151904 := proc(n) local k,j; k:=floor(n/6); j:=n-6*k; (3^(wt(k)+f(j))-1)/2; end;
    A151905 := proc (n) local k,j;
    if (n=0) then 0;
    elif (n=1) then 1;
    elif (n=2) then 0;
    else k:=floor( log(n/3)/log(2) ); j:=n-3*2^k; A151904(j); fi;
    end;
    A151906 := proc(n);
    if (n=0) then 0;
    elif (n=1) then 1;
    else 8*A151905(n) + 4;
    fi;
    end;
  • Mathematica
    wt[n_] := DigitCount[n, 2, 1];
    f[n_] := {0, 0, 1, 1, 1, 2}[[Mod[n, 6] + 1]];
    A151902[n_] := wt[Floor[n/6]] + f[n - 6 Floor[n/6]];
    A151904[n_] := (3^A151902[n] - 1)/2;
    A151905[n_] := Module[{k, j}, Switch[n, 0, 0, 1, 1, 2, 0, _, k = Floor[Log2[n/3]]; j = n - 3*2^k; A151904[j]]];
    a[n_] := Switch[n, 0, 0, 1, 1, _, 8 A151905[n] + 4];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 16 2023, after Maple code *)

Formula

The three trisections are essentially A147582, A147582 and 3*A147582 respectively. More precisely, For t >= 1, a(3t) = a(3t+1) = A147582(t+1) = 4*3^(wt(t)-1), a(3t+2) = 4*A147582(t+1) = 4*3^wt(t). See A151907 for explanation.