cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151915 Wythoff AAAA numbers.

Original entry on oeis.org

1, 9, 14, 22, 30, 35, 43, 48, 56, 64, 69, 77, 85, 90, 98, 103, 111, 119, 124, 132, 137, 145, 153, 158, 166, 174, 179, 187, 192, 200, 208, 213, 221, 229, 234, 242, 247, 255, 263, 268, 276, 281, 289, 297, 302, 310, 318, 323, 331, 336, 344, 352, 357, 365, 370, 378
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2008

Keywords

Comments

In general Wythoff "AA...A" numbers, say A^(m)(n), with m A's, m>=1, are given by the formula: A^(m)(n) = F(m)*floor(n*Phi) + F(m-1)*n - F(m+1) + 1 where F are the Fibonacci numbers A000045.

Crossrefs

Cf. A001622, A000201 (Wythoff A numbers), A003622 (Wythoff AA numbers), A134859 (Wythoff AAA numbers).

Programs

  • Maple
    A151915 := proc(n)
        g := (1+sqrt(5))/2 ;
        2*n-4+3*floor(n*g) ;
    end proc:
    seq(A151915(n),n=1..30) ; # R. J. Mathar, Jun 09 2018
  • Mathematica
    a[n_] := 3 * Floor[n * GoldenRatio] + 2n - 4; Array[a, 100] (* Amiram Eldar, Dec 02 2018 *)
  • PARI
    a(n)=3*floor(n/2*(1+sqrt(5)))+2*n-4
    
  • Python
    from math import isqrt
    def A151915(n): return (n-2<<1)+((m:=n+isqrt(5*n**2))&-2)+(m>>1) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(A(A(A(n)))) where A(n) = A000201(n);
a(n) = 3*floor(n*phi) + 2*n - 4 = 3*A000201(n) + 2*n - 4, where phi = (1+sqrt(5))/2.