cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151917 a(0)=0, a(1)=1; for n>=2, a(n) = (2/3)*(Sum_{i=1..n-1} 3^wt(i)) + 1, where wt() = A000120().

Original entry on oeis.org

0, 1, 3, 5, 11, 13, 19, 25, 43, 45, 51, 57, 75, 81, 99, 117, 171, 173, 179, 185, 203, 209, 227, 245, 299, 305, 323, 341, 395, 413, 467, 521, 683, 685, 691, 697, 715, 721, 739, 757, 811, 817, 835, 853, 907, 925, 979, 1033, 1195, 1201, 1219
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2009, Aug 06 2009

Keywords

Comments

Also, total number of "ON" cells at n-th stage in two of the four wedges of the "Ulam-Warburton" two-dimensional cellular automaton of A147562, but including the central ON cell. It appears that this is very close to A139250, the toothpick sequence. - Omar E. Pol, Feb 22 2015

Examples

			n=3: (2/3)*(3^1+3^1+3^2+3^1) + 1 = (2/3)*18 + 1 = 13.
		

Crossrefs

Programs

  • Mathematica
    Array[(2/3) Sum[3^(Total@ IntegerDigits[i, 2]), {i, # - 1}] + 1 &, 50] (* Michael De Vlieger, Nov 01 2022 *)
  • PARI
    a(n) = if (n<2, n, 1 + 2*sum(i=1,n-1, 3^hammingweight(i))/3); \\ Michel Marcus, Feb 22 2015

Formula

a(n) = A151914(n)/4.
a(n) = A079315(2n)/4.
For n>=2, a(n) = 2*A151920(n-2) + 1.
For n>=1, a(n) = (1 + A147562(n))/2. - Omar E. Pol, Mar 13 2011
a(2^k) = A007583(k), if k >= 0. - Omar E. Pol, Feb 22 2015