A151918 a(n) = k! - prime(n) where k is the smallest number for which prime(n) <= k!.
0, 3, 1, 17, 13, 11, 7, 5, 1, 91, 89, 83, 79, 77, 73, 67, 61, 59, 53, 49, 47, 41, 37, 31, 23, 19, 17, 13, 11, 7, 593, 589, 583, 581, 571, 569, 563, 557, 553, 547, 541, 539, 529, 527, 523, 521, 509, 497, 493, 491, 487, 481, 479, 469, 463, 457, 451, 449, 443, 439, 437
Offset: 0
Examples
a(1) = 2! - p(1) = 2 - 2 = 0; a(2) = 3! - p(2) = 6 - 3 = 3; a(3) = 3! - p(3) = 6 - 5 = 1; a(4) = 4! - p(4) = 24 - 7 = 17; a(5) = 4! - p(5) = 24 - 11 = 13; a(6) = 4! - p(6) = 24 - 13 = 11; a(7) = 4! - p(7) = 24 - 17 = 7; a(8) = 4! - p(8) = 24 - 19 = 5; a(9) = 4! - p(9) = 24 - 23 = 1; a(10) = 5! - p(10) = 120 - 29 = 91; etc.
Programs
-
Maple
A048765 := proc(n) for i from 1 do if i! >= n then return i! ; end if; end do: end proc: A151918 := proc(n) p := ithprime(n) ; A048765(p)-p ; end proc: seq(A151918(n),n=1..80) ; # R. J. Mathar, Aug 25 2010
-
Mathematica
Module[{fs=Range[10]!,p},Join[{0},Flatten[Table[p=Prime[n];Select[ fs,#>p&,1]-p,{n,2,70}]]]] (* Harvey P. Dale, Oct 04 2013 *)
Formula
a(n) = A048765(prime(n)) - prime(n). - R. J. Mathar, Aug 25 2010
Extensions
More terms from R. J. Mathar, Aug 25 2010
Comments