A151975 The number of ways one can flip seven consecutive tails (or heads) when flipping a coin n times.
0, 0, 0, 0, 0, 0, 0, 1, 3, 8, 20, 48, 112, 256, 576, 1279, 2811, 6126, 13256, 28512, 61008, 129952, 275712, 582913, 1228551, 2582048, 5412984, 11321744, 23631056, 49229312, 102377216, 212560127, 440668919, 912310222, 1886316324, 3895528632, 8035861664
Offset: 0
Examples
a(0)=0 means that there are no cases of seven consecutive tails (or heads) in zero coin flips. Likewise, a(1)=a(2)=...=a(6)=0. a(7)=1 since there is exactly one case of seven consecutive tails in seven coin flips.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Benjamin E. Merkel, Probabilities of Consecutive Events in Coin Flipping, OhioLINK, 2011
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1,-1,-1,-1,-1,-2).
Programs
-
PARI
N=66; x='x+O('x^N); gf = (1-x)/(1-2*x); /* A011782(n): compositions of n */ gf -= 1/(1 - (x+x^2+x^3+x^4+x^5+x^6+x^7)); /* A066178(n): compositions of n into parts <=7 */ v151975=Vec(gf + 'a0); v151975[1]=0; /* kludge to get all terms */ v151975 /* show terms */ /* Joerg Arndt, Aug 06 2012 */
-
PARI
concat(vector(7), Vec(x^7/((2*x-1)*(x^7+x^6+x^5+x^4+x^3+x^2+x-1)) + O(x^100))) \\ Colin Barker, Oct 16 2015
Formula
G.f.: x^7 / ((2*x-1)*(x^7+x^6+x^5+x^4+x^3+x^2+x-1)). - Colin Barker, Oct 16 2015
Comments