A151981 Numbers n such that n^2 - n is divisible by 48.
0, 1, 16, 33, 48, 49, 64, 81, 96, 97, 112, 129, 144, 145, 160, 177, 192, 193, 208, 225, 240, 241, 256, 273, 288, 289, 304, 321, 336, 337, 352, 369, 384, 385, 400, 417, 432, 433, 448, 465, 480, 481, 496, 513, 528, 529, 544, 561, 576, 577, 592, 609, 624, 625, 640, 657, 672
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[n : n in [0..800] | n mod 48 in [0, 1, 16, 33]]; // Wesley Ivan Hurt, Jun 07 2016
-
Maple
A151981:=n->12*n-(35+3*I^(2*n))/2+(2+2*I)*I^(-n)+(2-2*I)*I^n: seq(A151981(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
-
Mathematica
Table[12n-(35+3*I^(2*n))/2+(2+2*I)*I^(-n)+(2-2*I)*I^n, {n, 80}] (* Wesley Ivan Hurt, Jun 07 2016 *)
-
PARI
a(n)=n\4*48+[-15, 0, 1, 16][n%4+1] \\ Charles R Greathouse IV, Apr 10 2012
Formula
From Colin Barker, Apr 10 2012: (Start)
G.f.: x^2*(1+15*x+17*x^2+15*x^3)/((1-x)^2*(1+x)*(1+x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
a(n) = 12*n-(35+3*i^(2*n))/2+(2+2*i)*i^(-n)+(2-2*i)*i^n where i=sqrt(-1). - Wesley Ivan Hurt, Jun 07 2016
Comments