A152021 Numbers a(n) are obtained by the direct application of sieve of Eratosthenes for A000695: retaining A000695(2)=4, we delete all multiples of 4, which are more than 4; retaining A000695(3)=5, we delete all multiples of 5, which are more than 5, etc.
4, 5, 17, 21, 69, 81, 257, 261, 277, 321, 337, 341, 1041, 1089, 1093, 1109, 1297, 1301, 1349, 1361, 4101, 4113, 4117, 4161, 4177, 4181, 4353, 4357, 4373, 4417, 4421, 5121, 5137, 5141, 5189, 5201, 5377, 5381, 5393, 5441, 5461, 16389, 16449, 16453, 16469, 16641
Offset: 1
Keywords
Crossrefs
Cf. A000695.
Programs
-
Maple
Contribution from R. J. Mathar, Oct 29 2010: (Start) A000695 := proc(n) local dgsa ; if n= 0 then 0; else for a from procname(n-1)+1 do dgsa := convert(convert(a,base,4),set) ; if dgsa minus {0,1} = {} then return a; end if; end do: end if; end proc: A152021 := proc(nmax) a := [seq(A000695(i),i=2..nmax)] ; ptr := 1; while ptr < nops(a) do for j from nops(a) to ptr+1 by -1 do if op(j,a) mod op(ptr,a) = 0 then a := subsop(j=NULL,a) ; end if; end do: ptr := ptr+1 ; end do: a ; end proc: A152021(120) ; (End)
-
Mathematica
f[n_] := FromDigits[IntegerDigits[n, 2], 4]; s = Array[f, 150, 2]; div[a_, b_] := Divisible[a, b] && a > b; n = 1; While[Length[s] > n, s = Select[s, !div[#, s[[n]]] &]; n++]; s (* Amiram Eldar, Aug 31 2019 *)
Extensions
More terms from R. J. Mathar, Oct 29 2010
More terms from Amiram Eldar, Aug 31 2019
Comments