A152073 a(n) = largest prime < prime(n) such that prime(n) - a(n) is a power of 2, where prime(n) is the n-th prime; a(n) = 0 if no such prime exists.
2, 3, 5, 7, 11, 13, 17, 19, 13, 29, 29, 37, 41, 43, 37, 43, 59, 59, 67, 71, 71, 79, 73, 89, 97, 101, 103, 107, 109, 0, 127, 73, 137, 0, 149, 149, 131, 163, 157, 163, 179, 127, 191, 193, 197, 179, 191, 223, 227, 229, 223, 239, 0, 241, 199, 13, 269, 269, 277, 281, 277, 179
Offset: 2
Examples
Looking at the primes less than the 10th prime = 29: 29 - 23 = 6, not a power of 2. 29-19 = 10, not a power of 2. 29-17 = 12, not a power of 2. But 29-13 = 16, a power of 2. Since p = 13 is the largest prime p such that 29 - p = a power of 2, then a(10) = 13.
Links
- Ivan Neretin, Table of n, a(n) for n = 2..10000
Programs
-
Mathematica
Table[Max[0, Select[# - 2^Range[0, Log2@#] &@Prime[n], PrimeQ]], {n, 2, 63}] (* Ivan Neretin, Jun 10 2018 *)
-
PARI
A152073(n)=local( q=n=prime(n)); while( q=precprime(q-1), n-q==1<
M. F. Hasler, Nov 23 2008
Extensions
Edited and extended by M. F. Hasler and Ray Chandler, Nov 23 2008
Comments