cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152132 Maximal length of rook tour on an n X n+1 board.

Original entry on oeis.org

2, 8, 24, 54, 104, 174, 270, 396, 558, 756, 996, 1282, 1620, 2010, 2458, 2968, 3546, 4192, 4912, 5710, 6592, 7558, 8614, 9764, 11014, 12364, 13820, 15386, 17068, 18866, 20786, 22832, 25010, 27320, 29768, 32358, 35096, 37982, 41022, 44220, 47582
Offset: 1

Views

Author

R. J. Mathar, Mar 22 2009

Keywords

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 76.

Crossrefs

Programs

  • Magma
    I:=[2, 8, 24, 54, 104, 174, 270]; [n le 7 select I[n] else 3*Self(n-1) - 3*Self(n-2) + Self(n-3) + Self(n-4) - 3*Self(n-5) + 3*Self(n-6)- Self(n-7): n in [1..50]]; // Vincenzo Librandi, Dec 14 2012
  • Maple
    # Figure 43 of the Gardner book:
    C := proc(n,m)
    if type(m,even) and type(n,even) then
    2 ;
    elif type(m,odd) and type(n,odd) then
    1 ;
    elif type(m,even) and type(n,odd) and type(floor(n/2),even) then
    3/2 ;
    elif type(m,even) and type(n,odd) and type(floor(n/2),odd) then
    1/2 ;
    elif type(m,odd) and type(n,even) and type(floor(n/2),even) then
    0 ;
    elif type(m,odd) and type(n,even) and type(floor(n/2),odd) then
    1 ;
    fi;
    end:
    # formula for n X m boards, from the Gardner book:
    T := proc(n,m)
    n*(3*m^2+n^2-10)/6+C(n,m) ;
    end:
    for n from 1 to 24 do
    m := n+3 ; # third diagonal here, for example
    printf("%d,",T(n,m)) ;
    od:
  • Mathematica
    CoefficientList[Series[-2 * (-1 - x - 2*x^3 - 2*x^4 - 3*x^2 + x^5)/(1 + x)/(x^2 + 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 14 2012 *)

Formula

G.f.: -2*x*(-1-x-2*x^3-2*x^4-3*x^2+x^5)/(1+x)/(x^2+1)/(x-1)^4.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-4) -3*a(n-5) +3*a(n-6) -a(n-7).
a(n) = 2*n^3/3+n^2-7*n/6+3/4-(-1)^n/4-A087960(n)/2.

Extensions

More terms from R. J. Mathar, Sep 22 2009