cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152146 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) = number of partitions of 2n into 2k odd parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 3, 3, 2, 1, 1, 0, 3, 5, 3, 2, 1, 1, 0, 4, 6, 5, 3, 2, 1, 1, 0, 4, 9, 7, 5, 3, 2, 1, 1, 0, 5, 11, 11, 7, 5, 3, 2, 1, 1, 0, 5, 15, 14, 11, 7, 5, 3, 2, 1, 1, 0, 6, 18, 20, 15, 11, 7, 5, 3, 2, 1, 1, 0, 6, 23, 26, 22, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 25 2009, indices corrected Jul 09 2012

Keywords

Comments

In both this and A152157, reading columns downwards "converges" to A000041.
Also the number of strict integer partitions of 2n with alternating sum 2k. Also the number of normal integer partitions of 2n of which 2k parts are odd, where a partition is normal if it covers an initial interval of positive integers. - Gus Wiseman, Jun 20 2021

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  1   1
  0  2  2   1   1
  0  3  3   2   1   1
  0  3  5   3   2   1   1
  0  4  6   5   3   2   1  1
  0  4  9   7   5   3   2  1  1
  0  5 11  11   7   5   3  2  1  1
  0  5 15  14  11   7   5  3  2  1  1
  0  6 18  20  15  11   7  5  3  2  1  1
  0  6 23  26  22  15  11  7  5  3  2  1  1
  0  7 27  35  29  22  15 11  7  5  3  2  1  1
  0  7 34  44  40  30  22 15 11  7  5  3  2  1 1
  0  8 39  58  52  42  30 22 15 11  7  5  3  2 1 1
  0  8 47  71  70  55  42 30 22 15 11  7  5  3 2 1 1
  0  9 54  90  89  75  56 42 30 22 15 11  7  5 3 2 1 1
  0  9 64 110 116  97  77 56 42 30 22 15 11  7 5 3 2 1 1
  0 10 72 136 146 128 100 77 56 42 30 22 15 11 7 5 3 2 1 1
From _Gus Wiseman_, Jun 20 2021: (Start)
For example, row n = 6 counts the following partitions (B = 11):
  (75)  (3333)  (333111)  (33111111)  (3111111111)  (111111111111)
  (93)  (5331)  (531111)  (51111111)
  (B1)  (5511)  (711111)
        (7311)
        (9111)
The corresponding strict partitions are:
  (7,5)      (8,4)      (9,3)    (10,2)   (11,1)  (12)
  (6,5,1)    (5,4,3)    (7,3,2)  (9,2,1)
  (5,4,2,1)  (6,4,2)    (8,3,1)
             (7,4,1)
             (6,3,2,1)
The corresponding normal partitions are:
  43221    33321     3321111    321111111   21111111111  111111111111
  322221   332211    32211111   2211111111
  2222211  432111    222111111
           3222111
           22221111
(End)
		

Crossrefs

Cf. A035294 (row sums), A107379, A152140, A152157.
Column k = 1 is A004526.
Column k = 2-8 is A026810 - A026816.
The non-strict version is A239830.
The reverse non-strict version is A344610.
The reverse version is A344649
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2)+`if`(i>n, 0, expand(sqrt(x)*b(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(2*n, 2*n-1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&ats[#]==k&]],{n,0,30,2},{k,0,n,2}] (* Gus Wiseman, Jun 20 2021 *)

Formula

T(n,k) = A152140(2n,2k).