A152166 a(2*n) = 2^n; a(2*n+1) = -(2^(n+1)).
1, -2, 2, -4, 4, -8, 8, -16, 16, -32, 32, -64, 64, -128, 128, -256, 256, -512, 512, -1024, 1024, -2048, 2048, -4096, 4096, -8192, 8192, -16384, 16384, -32768, 32768, -65536, 65536, -131072, 131072, -262144, 262144, -524288, 524288, -1048576, 1048576
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Crossrefs
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Programs
-
Mathematica
LinearRecurrence[{0, 2}, {1, -2}, 50] (* Paolo Xausa, Jul 19 2024 *)
Formula
G.f.: (1 - 2*x)/(1 - 2*x^2).
a(n) = 2*a(n-2); a(0)=1, a(1)=-2.
a(n) = Sum_{k=0..n} A147703(n,k)*(-3)^k.
E.g.f.: cosh(sqrt(2)*x) - sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Feb 05 2023
Comments