A152173 a(n) is the number of Dyck paths of length n without height of peaks 1 (mod 3) and height of valleys 2 (mod 3).
1, 0, 1, 2, 4, 10, 23, 56, 138, 344, 870, 2220, 5716, 14828, 38717, 101682, 268416, 711810, 1895432, 5066030, 13586082, 36547534, 98593064, 266661162, 722953814, 1964358938, 5348367006, 14589803090, 39870312218, 109136843138
Offset: 2
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 2..1000
- Shu-Chung Liu, Jun Ma, Yeong-Nan Yeh, Dyck Paths with Peak- and Valley-Avoiding Sets, Stud. Appl Math. 121 (3) (2008) 263-289.
Crossrefs
Cf. A127389. - R. J. Mathar, Dec 03 2008
Programs
-
Mathematica
CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2+4x^4])/(2x^2 (1+x)),{x,0,30}],x] (* Harvey P. Dale, Feb 10 2015 *)
Formula
G.f.: (1 - x - sqrt(1 - 2*x - 3*x^2 + 4*x^4))/(2(1+x)x^2).
Conjecture: -n*a(n) + (n-3)*a(n-1) + (5*n-12)*a(n-2) + 3*(n-3)*a(n-3) + 4*(6-n)*a(n-4) + 4*(6-n)*a(n-5) = 0. - R. J. Mathar, Aug 14 2012
G.f.: 1/x^2 - 2/x + 2/(1+x) + G(0)/x where G(k) = 1 - 1/(x + x^2/(1 + x/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012