cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152173 a(n) is the number of Dyck paths of length n without height of peaks 1 (mod 3) and height of valleys 2 (mod 3).

Original entry on oeis.org

1, 0, 1, 2, 4, 10, 23, 56, 138, 344, 870, 2220, 5716, 14828, 38717, 101682, 268416, 711810, 1895432, 5066030, 13586082, 36547534, 98593064, 266661162, 722953814, 1964358938, 5348367006, 14589803090, 39870312218, 109136843138
Offset: 2

Views

Author

Jun Ma (majun(AT)math.sinica.edu.tw), Nov 27 2008

Keywords

Crossrefs

Cf. A127389. - R. J. Mathar, Dec 03 2008

Programs

  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2+4x^4])/(2x^2 (1+x)),{x,0,30}],x] (* Harvey P. Dale, Feb 10 2015 *)

Formula

G.f.: (1 - x - sqrt(1 - 2*x - 3*x^2 + 4*x^4))/(2(1+x)x^2).
Conjecture: -n*a(n) + (n-3)*a(n-1) + (5*n-12)*a(n-2) + 3*(n-3)*a(n-3) + 4*(6-n)*a(n-4) + 4*(6-n)*a(n-5) = 0. - R. J. Mathar, Aug 14 2012
G.f.: 1/x^2 - 2/x + 2/(1+x) + G(0)/x where G(k) = 1 - 1/(x + x^2/(1 + x/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012