A152249 Triangle of 4 - restricted Eulerian numbers as polynomials used in exponential data smoothing: m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6; t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n.
1, 1, 6, 1, 19, 36, 1, 46, 241, 216, 1, 101, 1091, 2551, 1296, 1, 212, 4182, 18932, 24337, 7776, 1, 435, 14666, 113366, 273141, 217015, 46656, 1, 882, 48783, 600124, 2385999, 3487218, 1845697, 279936, 1, 1777, 156933, 2937109, 17931235, 42397299
Offset: 1
Examples
{1}, {1, 6}, {1, 19, 36}, {1, 46, 241, 216}, {1, 101, 1091, 2551, 1296}, {1, 212, 4182, 18932, 24337, 7776}, {1, 435, 14666, 113366, 273141, 217015, 46656}, {1, 882, 48783, 600124, 2385999, 3487218, 1845697, 279936}, {1, 1777, 156933, 2937109, 17931235, 42397299, 40817623, 15159367, 1679616}, {1, 3568, 493900, 13631632, 121964374, 433696144, 667299052, 447815920, 121232113,10077696}
References
- Douglas C. Montgomery, Lynwood A, Johnson, Forecasting and Time Series Analysis,McGraw-Hill, New York,1976,page 64.
Programs
-
Mathematica
M[p_, k_, x_] = ((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x; Table[Table[CoefficientList[FullSimplify[ExpandAll[(-1)^m*m!*M[n, m, x]]]/n, x], {m, 1, 10}], {n, 1, 10}]; Table[Flatten[Table[CoefficientList[FullSimplify[ExpandAll[(-1)^m*m!*M[n, m, x]]]/n, x], {m, 1, 10}]], {n, 1, 10}]
Formula
m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6;
t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n
Comments