cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152249 Triangle of 4 - restricted Eulerian numbers as polynomials used in exponential data smoothing: m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6; t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n.

Original entry on oeis.org

1, 1, 6, 1, 19, 36, 1, 46, 241, 216, 1, 101, 1091, 2551, 1296, 1, 212, 4182, 18932, 24337, 7776, 1, 435, 14666, 113366, 273141, 217015, 46656, 1, 882, 48783, 600124, 2385999, 3487218, 1845697, 279936, 1, 1777, 156933, 2937109, 17931235, 42397299
Offset: 1

Views

Author

Roger L. Bagula, Nov 30 2008

Keywords

Comments

Row sums are: {1, 7, 56, 504, 5040, 55440, 665280, 8648640, 121080960, 1816214400,...}. The sequences A008292, A144696,A144697,A144698,A144699 and this one, form a matrix of polynomials that are used in data smoothing calculations.

Examples

			{1},
{1, 6},
{1, 19, 36},
{1, 46, 241, 216},
{1, 101, 1091, 2551, 1296},
{1, 212, 4182, 18932, 24337, 7776},
{1, 435, 14666, 113366, 273141, 217015, 46656},
{1, 882, 48783, 600124, 2385999, 3487218, 1845697, 279936},
{1, 1777, 156933, 2937109, 17931235, 42397299, 40817623, 15159367, 1679616},
{1, 3568, 493900, 13631632, 121964374, 433696144, 667299052, 447815920, 121232113,10077696}
		

References

  • Douglas C. Montgomery, Lynwood A, Johnson, Forecasting and Time Series Analysis,McGraw-Hill, New York,1976,page 64.

Crossrefs

Programs

  • Mathematica
    M[p_, k_, x_] = ((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;
    Table[Table[CoefficientList[FullSimplify[ExpandAll[(-1)^m*m!*M[n, m, x]]]/n, x], {m, 1, 10}], {n, 1, 10}];
    Table[Flatten[Table[CoefficientList[FullSimplify[ExpandAll[(-1)^m*m!*M[n, m, x]]]/n, x], {m, 1, 10}]], {n, 1, 10}]

Formula

m(p,k,x)=((-1)^k*(1 - x)^(p + k)/(k!(p - 1)!))*Sum[(p - 1 + j)!*j^k*x^j/(j!), {j, 0, Infinity}]/x;n=6;
t(m,l)=coefficients((-1)^m*m!*M[n, m, x])/n