A152273
Number of 1's among the digits of all n-digit primes.
Original entry on oeis.org
0, 9, 69, 603, 5672, 53281, 510523, 4940488, 48169672, 471970959, 4641157883, 45764403814, 452221586920, 4476140736522
Offset: 1
A152274
Number of 2's among the digits of all n-digit primes.
Original entry on oeis.org
1, 2, 29, 359, 3515, 35666, 361054, 3647203, 36746382, 369719841, 3715552230, 37310055810, 374416981198, 3755522785108
Offset: 1
A152275
Number of 3's among the digits of all n-digit primes.
Original entry on oeis.org
1, 8, 66, 602, 5552, 52541, 505880, 4907822, 47923752, 469985783, 4625005356, 45629711436, 451086676886, 4466423651321
Offset: 1
-
Join[{1},Table[Count[Flatten[IntegerDigits/@Prime[Range[PrimePi[10^(n-1)]+ 1,PrimePi[10^n]]]],3],{n,2,11}]] (* Harvey P. Dale, Dec 18 2011 *)
A152276
Number of 4's among the digits of all n-digit primes.
Original entry on oeis.org
0, 3, 31, 326, 3412, 35234, 358468, 3625027, 36582450, 368381208, 3704525518, 37218251329, 373639701352, 3748854986738
Offset: 1
A152277
Number of 5's among the digits of all n-digit primes.
Original entry on oeis.org
1, 2, 30, 327, 3456, 35095, 357105, 3619716, 36527939, 367918469, 3700831147, 37186789514, 373373251387, 3746568191964
Offset: 1
A152278
Number of 6's among the digits of all n-digit primes.
Original entry on oeis.org
0, 2, 31, 336, 3372, 34973, 356907, 3612084, 36476490, 367550925, 3697683123, 37160602675, 373149954035, 3744652623110
Offset: 1
A152279
Number of 7's among the digits of all n-digit primes.
Original entry on oeis.org
1, 8, 69, 574, 5520, 52155, 502179, 4882568, 47709672, 468269438, 4610668567, 45510662200, 450072137956, 4457717637910
Offset: 1
A152280
Number of 8's among the digits of all n-digit primes.
Original entry on oeis.org
0, 2, 28, 321, 3339, 34851, 355857, 3604013, 36401367, 366916898, 3692575693, 37117851883, 372788385400, 3741537104740
Offset: 1
A152281
Number of 9's among the digits of all n-digit primes.
Original entry on oeis.org
0, 6, 61, 579, 5484, 52015, 500811, 4873234, 47639648, 467715626, 4606264916, 45472773167, 449751152190, 4454948367909
Offset: 1
-
Table[Count[Flatten[IntegerDigits/@Prime[Range[PrimePi[10^i]+1,PrimePi[10^(i+1)]]]],9],{i,0,10}] (* Harvey P. Dale, Dec 08 2010 *)
A377571
a(n) is a n-digit number; for k = 1..n, its k-th digit is the most frequent k-th digit among n-digit prime numbers; in case of a tie, preference is given to the least digit.
Original entry on oeis.org
2, 13, 157, 1223, 12127, 104993, 1000597, 10289067, 100080553, 1000447633, 10015225131
Offset: 1
For n = 4: the frequency of digits among 4-digit prime numbers, and the corresponding most frequent digits, are:
Digit 0 1 2 3 4 5 6 7 8 9 Most frequent
----- --- ---- ---- ---- --- --- --- --- --- --- -------------
1st 0 135* 127 120 119 114 117 107 110 112 1
2nd 112 95 116* 104 104 107 115 104 106 98 2
3rd 105 107 116* 110 103 106 104 101 105 104 2
4th 0 266 0 268* 0 0 0 262 0 265 3
- so a(4) = 1223.
-
a(n, base = 10) = { my (f = vector(n, k, vector(base))); forprime (p = base^(n-1), base^n-1, my (d = digits(p, base)); for (k = 1, n, f[k][1+d[k]]++;);); my (b = vector(n), i); for (k = 1, n, vecmax(f[k], &i); b[k] = i-1;); fromdigits(b, base); }
-
from sympy import primerange
def A377571(n):
c = [[0]*10 for i in range(n)]
for p in primerange(10**(n-1),10**n):
for i, j in enumerate(str(p)):
c[i][int(j)]+=1
return int(''.join(str(c[i].index(max(c[i]))) for i in range(n))) # Chai Wah Wu, Nov 06 2024
Showing 1-10 of 10 results.
Comments