A152305 Marsaglia-Zaman type recursive sequence: f(x)=f(x - 2) + f(x - 3) + Floor[f(x - 1)/10]; a(n)=Mod[f(n),10].
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 2, 7, 2, 1, 2, 7, 8, 6, 5, 8, 0, 0, 5, 0, 4, 9, 2, 9, 1, 0, 0, 6, 0, 5, 6, 1, 5, 7, 7, 4, 5, 9, 2, 7, 8, 0, 2, 6, 9, 0, 6, 1, 4, 4, 7, 4, 3, 5, 2, 2, 1, 0, 8, 3, 2, 8, 0, 7, 9, 4, 2, 0, 8, 7, 2, 4, 2, 6, 9, 9, 9, 0, 6, 2, 6, 5, 6, 8, 3, 7, 9, 4, 9, 6, 4, 1, 7, 9, 7, 1, 4
Offset: 0
Keywords
References
- Ivars Peterson, The Jungles of Randomness, 1998, John Wiley and Sons, Inc., page 207
Programs
-
Mathematica
f[0] = f[1] = f[2] = 1; f[x_] := f[x] = f[x - 2] + f[x - 3] + Floor[f[x - 1]/10]; Table[Mod[f[n], 10], {n, 0, 100}]
Formula
f(x)=f(x - 2) + f(x - 3) + Floor[f(x - 1)/10];
a(n)=Mod[f(n),10].