A152405 Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {m*(m+1)/2, m>=0} and then taking partial sums, starting with all 1's in row 0.
1, 1, 1, 3, 2, 1, 14, 8, 3, 1, 86, 45, 14, 4, 1, 645, 318, 86, 22, 5, 1, 5662, 2671, 645, 152, 31, 6, 1, 56632, 25805, 5662, 1251, 232, 41, 7, 1, 633545, 280609, 56632, 11869, 2026, 327, 53, 8, 1, 7820115, 3381993, 633545, 126987, 20143, 2991, 457, 66, 9, 1
Offset: 0
Examples
Table begins: (1),(1),1,(1),1,1,(1),1,1,1,(1),1,1,1,1,(1),1,...; (1),(2),3,(4),5,6,(7),8,9,10,(11),12,13,14,15,(16),...; (3),(8),14,(22),31,41,(53),66,80,95,(112),130,149,169,190,...; (14),(45),86,(152),232,327,(457),606,775,965,(1202),1464,1752,2067,...; (86),(318),645,(1251),2026,2991,(4455),6207,8274,10684,(13934),17653,...; (645),(2671),5662,(11869),20143,30827,(48480),70355,96990,128959,...; (5662),(25805),56632,(126987),223977,352936,(582183),874664,1240239,...; (56632),(280609),633545,(1508209),2748448,4438122,(7641111),11831184,...; (633545),(3381993),7820115,(19651299),36837937,60743909,...; ... where row n equals the partial sums of row n-1 after removing terms at positions {m*(m+1)/2, m>=0} (marked by parenthesis in above table). For example, to generate row 3 from row 2: [3,8, 14, 22, 31,41, 53, 66,80,95, 112, 130,...] remove terms at positions {0,1,3,6,10,...}, yielding: [14, 31,41, 66,80,95, 130,149,169,190, ...] then take partial sums to obtain row 3: [14, 45,86, 152,232,327, 457,606,775,965, ...]. Continuing in this way generates all rows of this table. RELATION TO POWERS OF A SPECIAL TRIANGULAR MATRIX. Columns 0 and 1 are found in triangle T=A152400, which begins: 1; 1, 1; 3, 2, 1; 14, 8, 3, 1; 86, 45, 15, 4, 1; 645, 318, 99, 24, 5, 1; 5662, 2671, 794, 182, 35, 6, 1; 56632, 25805, 7414, 1636, 300, 48, 7, 1; ... where column k of T = column 0 of matrix power T^(k+1) for k>=0. Furthermore, matrix powers of triangle T=A152400 satisfy: column k of T^(j+1) = column j of T^(k+1) for all j>=0, k>=0. Column 3 of this square array = column 1 of T^2: 1; 2, 1; 8, 4, 1; 45, 22, 6, 1; 318, 152, 42, 8, 1; 2671, 1251, 345, 68, 10, 1; 25805, 11869, 3253, 648, 100, 12, 1; ... RELATED TRIANGLE A127714 begins: 1; 1, 1, 1; 1, 2, 2, 3, 3, 3; 1, 3, 5, 5, 8, 11, 11, 14, 14, 14; 1, 4, 9, 14, 14, 22, 33, 44, 44, 58, 72, 72, 86, 86, 86;... where right border = column 0 of this square array.
Crossrefs
Programs
-
PARI
{T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==m*(m+1)/2, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}