A152455 a(n) = minimal integer m such that there exists an m X m integer matrix of order n.
0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 6, 8, 16, 6, 18, 6, 8, 10, 22, 6, 20, 12, 18, 8, 28, 6, 30, 16, 12, 16, 10, 8, 36, 18, 14, 8, 40, 8, 42, 12, 10, 22, 46, 10, 42, 20, 18, 14, 52, 18, 14, 10, 20, 28, 58, 8, 60, 30, 12, 32, 16, 12, 66, 18, 24, 10, 70, 10, 72, 36, 22, 20, 16, 14
Offset: 1
References
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 935 (note has erroneous value of a(11)).
- Marjorie Senechal, Quasicrystals and Geometry, Cambridge University Press, 1985, p. 51.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Howard Hiller, The Crystallographic Restriction in Higher Dimensions, Acta Cryst. (1985), A41, 541-544.
- Savinien Kreczman, Luca Prigioniero, Eric Rowland, and Manon Stipulanti, Magic numbers in periodic sequences, Univ. Liège (Belgium, 2023). See p. 7.
Crossrefs
See A080737 for another version. - N. J. A. Sloane, Dec 05 2008
Programs
-
Magma
a := function(n) if n le 2 then return n-1; end if; if n mod 4 eq 2 then n := n div 2; end if; f := Factorization(n); return &+[(t[1]-1)*t[1]^(t[2]-1):t in f]; end function;
-
Mathematica
Array[Set[a[#], # - 1] &, 2]; a[n_] := If[Mod[n, 4] == 2, a[n/2], Total@ Map[(#1 - 1)*#1^(#2 - 1) & @@ # &, FactorInteger[n]]]; Array[a, 120] (* Michael De Vlieger, Apr 04 2023 *)
Formula
a(1)=0, a(2)=1. If n mod 4 eq 2 then a(n)=a(n/2).
Otherwise a(n) = sum (pi-1)*pi^(ei-1) where n = p1^e1*p2^e2*...pk^ek is prime factorization of n.
Comments