A152495 1/3 of the number of permutations of 2 indistinguishable copies of 1..n with exactly 3 local maxima.
0, 0, 8, 483, 16205, 430078, 10210206, 228926441, 4979392831, 106552681812, 2260112122016, 47713890438655, 1004771692065345, 21130651257100970, 444074589574292578, 9329140064903065365, 195950323696361689667, 4115367075816142112512, 86427075922333935342372
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (50,-916,7914,-34047,70740,-56700).
Crossrefs
Cf. A334774.
Programs
-
PARI
\\ PeaksBySig defined in A334774. a(n) = {PeaksBySig(vector(n,i,2), [2])[1]/3} \\ Andrew Howroyd, May 12 2020
-
PARI
concat([0,0], Vec(x^3*(8 + 83*x - 617*x^2 - 1056*x^3) / ((1 - 3*x)^3*(1 - 10*x)^2*(1 - 21*x)) + O(x^22))) \\ Colin Barker, Jul 18 2020
Formula
a(n) = A334774(n,3)/3. - Andrew Howroyd, May 12 2020
From Colin Barker, Jul 18 2020: (Start)
G.f.: x^3*(8 + 83*x - 617*x^2 - 1056*x^3) / ((1 - 3*x)^3*(1 - 10*x)^2*(1 - 21*x)).
a(n) = 50*a(n-1) - 916*a(n-2) + 7914*a(n-3) - 34047*a(n-4) + 70740*a(n-5) - 56700*a(n-6) for n>6.
(End)
Extensions
Terms a(12) and beyond from Andrew Howroyd, May 11 2020