cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152532 a(n) = prime(n) * prime(n+2) - 2 * prime(n+1).

Original entry on oeis.org

4, 11, 41, 69, 161, 213, 353, 505, 655, 1011, 1197, 1509, 1841, 2185, 2667, 3115, 3831, 4197, 4749, 5463, 5901, 6865, 7873, 8795, 9789, 10601, 11013, 11873, 13617, 14549, 17137, 17935, 20135, 20691, 23091, 24299, 25893, 27865
Offset: 1

Views

Author

Omar E. Pol, Dec 06 2008

Keywords

Comments

Before this sequence, a(24) = 8795 was an uninteresting number, see References and Links. For example: 8795 was mentioned in Sloane's Gap paper, pages 4-5: Which numbers do not appear in Sloane's encyclopedia? At the time of an initial calculation conducted in August 2008 by Philippe Guglielmetti, the smallest absent number tracked down was 8795.

Examples

			For n = 2, prime(2) = 3, prime(2+1) = 5 and prime(2+2) = 7, so a(2) = 3*7 - 2*5 = 21 - 10 = 11.
For n = 24, prime(24) = 89, prime(24+1) = 97 and prime(24+2) = 101, so a(24) = 89*101 - 2*97 = 8989 - 194 = 8795.
		

References

  • Bartolo Luque, La brecha de Sloane: Tras la huella sociológica de las matemáticas, Investigación y Ciencia, Edición española de Scientific American, julio de 2014, p. 90-91.

Crossrefs

Programs

  • Maple
    seq(ithprime(n)*ithprime(n+2)-2*ithprime(n+1), n=1..1000); # Robert Israel, Dec 21 2014
  • Mathematica
    First[#]Last[#]-2#[[2]]&/@Partition[Prime[Range[100]],3,1] (* Harvey P. Dale, Jun 16 2011 *)
  • PARI
    a(n,p=prime(n))=my(q=nextprime(p+1)); p*nextprime(q+1) - 2*q
    apply(p->a(0,p), primes(100)) \\ Charles R Greathouse IV, Sep 14 2015

Formula

a(n) = A000040(n)*A000040(n+2) - 2*A000040(n+1) = A090076(n) - A100484(n+1).
a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Sep 14 2015