A152532 a(n) = prime(n) * prime(n+2) - 2 * prime(n+1).
4, 11, 41, 69, 161, 213, 353, 505, 655, 1011, 1197, 1509, 1841, 2185, 2667, 3115, 3831, 4197, 4749, 5463, 5901, 6865, 7873, 8795, 9789, 10601, 11013, 11873, 13617, 14549, 17137, 17935, 20135, 20691, 23091, 24299, 25893, 27865
Offset: 1
Examples
For n = 2, prime(2) = 3, prime(2+1) = 5 and prime(2+2) = 7, so a(2) = 3*7 - 2*5 = 21 - 10 = 11. For n = 24, prime(24) = 89, prime(24+1) = 97 and prime(24+2) = 101, so a(24) = 89*101 - 2*97 = 8989 - 194 = 8795.
References
- Bartolo Luque, La brecha de Sloane: Tras la huella sociológica de las matemáticas, Investigación y Ciencia, Edición española de Scientific American, julio de 2014, p. 90-91.
Links
- Ingo Althofer, Is 8795 a boring number?
- Nicolas Gauvrit, Jean-Paul Delahaye, and Hector Zenil, Sloane's Gap: Do Mathematical and Social Factors Explain the Distribution of Numbers in the OEIS?, arXiv:1101.4470 [math.PR], p. 4-5.
- Nicolas Gauvrit, Hector Zenil, and Jean-Paul Delahaye, Le fossé de Sloane, Math. & Sci. hum. / Mathematics and Social Sciences,1413, n° 194, Summer 2011 (in French).
- Charles R Greathouse IV, Uninteresting numbers.
Programs
-
Maple
seq(ithprime(n)*ithprime(n+2)-2*ithprime(n+1), n=1..1000); # Robert Israel, Dec 21 2014
-
Mathematica
First[#]Last[#]-2#[[2]]&/@Partition[Prime[Range[100]],3,1] (* Harvey P. Dale, Jun 16 2011 *)
-
PARI
a(n,p=prime(n))=my(q=nextprime(p+1)); p*nextprime(q+1) - 2*q apply(p->a(0,p), primes(100)) \\ Charles R Greathouse IV, Sep 14 2015
Comments