cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152545 Padovan-Fibonacci triangle, read by rows, where the first column equals the Padovan spiral numbers (A134816), while the row sums equal the Fibonacci numbers (A000045).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 1, 5, 4, 4, 3, 3, 1, 1, 7, 5, 5, 5, 4, 3, 3, 1, 1, 9, 7, 7, 7, 5, 5, 5, 4, 3, 1, 1, 1, 12, 9, 9, 9, 8, 7, 7, 7, 5, 4, 4, 4, 1, 1, 1, 1, 16, 12, 12, 12, 12, 9, 9, 9, 8, 8, 8, 7, 5, 4, 4, 4, 1, 1, 1, 1, 1, 21, 16, 16, 16, 16, 13, 12, 12, 12, 12, 12, 11, 9, 8
Offset: 0

Views

Author

Paul D. Hanna, Dec 13 2008

Keywords

Comments

The number of terms in each row equal the Padovan spiral numbers (A134816, with offset).

Examples

			Triangle begins:
[1],
[1],
[1,1],
[2,1],
[2,2,1],
[3,2,2,1],
[4,3,3,2,1],
[5,4,4,3,3,1,1],
[7,5,5,5,4,3,3,1,1],
[9,7,7,7,5,5,5,4,3,1,1,1],
[12,9,9,9,8,7,7,7,5,4,4,4,1,1,1,1],
[16,12,12,12,12,9,9,9,8,8,8,7,5,4,4,4,1,1,1,1,1],
[21,16,16,16,16,13,12,12,12,12,12,11,9,8,8,8,5,5,5,5,4,1,1,1,1,1,1,1],
[28,21,21,21,21,20,16,16,16,16,16,16,13,13,12,12,12,12,11,11,8,6,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1],
[37,28,28,28,28,28,22,21,21,21,21,21,20,20,20,20,18,16,16,16,14,13,12,12,12,12,12,11,6,6,6,6,6,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1],
[49,37,37,37,37,37,33,28,28,28,28,28,28,28,28,28,27,22,22,21,21,21,20,20,20,20,20,18,17,17,16,16,14,12,12,12,12,7,6,6,6,6,6,6,6,6,6,6,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
...
ILLUSTRATION OF RECURRENCE.
Start out with row 0 and row 1 consisting of a single '1'.
To obtain any given row of this irregular triangle, first
sum the prior two rows term-by-term; for rows 7 and 8 we get:
[5,4,4,3,3,1,1] + [7,5,5,5,4,3,3,1,1] = [12,9,9,8,7,4,4,1,1].
Place markers in an array so that the number of contiguous markers
in each row correspond to the term-by-term sums like so:
--------------------------
12:o o o o o o o o o o o o
9: o o o o o o o o o - - -
9: o o o o o o o o o - - -
8: o o o o o o o o - - - -
7: o o o o o o o - - - - -
4: o o o o - - - - - - - -
4: o o o o - - - - - - - -
1: o - - - - - - - - - - -
1: o - - - - - - - - - - -
--------------------------
Then count the markers by columns to obtain the desired row;
here, the number of markers in each column yields row 9:
[9,7,7,7,5,5,5,4,3,1,1,1].
Continuing in this way generates all the rows of this triangle.
		

Crossrefs

Cf. A134816, A000045, A000931; A152546 (row squared sums).

Programs

  • PARI
    {T(n,k)=local(G000931=(1-x^2)/(1-x^2-x^3+x*O(x^(n+6))));if(n<0,0,if(n<2&k==0,1, polcoeff(sum(j=0,polcoeff(G000931,n+5)-1,(x^(T(n-1,j)+T(n-2,j)) - 1)/(x-1)),k) ))};
    /* To print, use Padovan g.f. to get the number of terms in row n: */
    for(n=0,10,for(k=0,polcoeff((1-x^2)/(1-x^2-x^3+x*O(x^(n+6))),n+6)-1,print1(T(n,k),","));print(""))

Formula

G.f. for row n: Sum_{k=0..A000931(n+5)-1} (x^{T(n-1,k)+T(n-2,k)} - 1)/(x-1) = Sum_{k=0..A000931(n+6)-1} T(n,k)*x^k for n>1 with T(0,0)=T(1,0)=1, where A000931 is the Padovan sequence.