A152558 Coefficients in a q-analog of the function LambertW(-2x)/(-2x) at q=3.
1, 2, 22, 912, 126692, 56277344, 78192313656, 335781903409152, 4424572027813470736, 178044609358672673825280, 21805611052892733414074516064, 8108006645142880473904973170212864
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 22/4*x^2 + 912/52*x^3 + 126692/2080*x^4 + 56277344/251680*x^5 +... e_q(x,3) = 1 + x + x^2/4 + x^3/52 + x^4/2080 + x^5/251680 + x^6/91611520 +... The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
Programs
-
PARI
{a(n)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=serreverse(x/(e_q+x*O(x^n))^2)/x); subst(polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1)),q,3)}
Formula
G.f. satisfies: A(x) = e_q( x*A(x), 3)^2 and A( x/e_q(x,3)^2 ) = e_q(x,3)^2 where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,3) where faq(n,3) = q-factorial of n at q=3.
G.f.: A(x) = (1/x)*Series_Reversion( x/e_q(x,3)^2 ).
a(n) = Sum_{k=0..n(n-1)/2} A152555(n,k)*3^k.