cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152621 a(n)=8*a(n-1)-6*a(n-2), n>1 ; a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 10, 68, 484, 3464, 24808, 177680, 1272592, 9114656, 65281696, 467565632, 3348834880, 23985285248, 171789272704, 1230402470144, 8812484124928, 63117458178560, 452064760678912, 3237813336359936, 23190118126806016
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2008

Keywords

Comments

Unsigned version of A152620.

Programs

  • Mathematica
    LinearRecurrence[{8,-6},{1,2},30] (* Harvey P. Dale, Jun 19 2022 *)

Formula

G.f.: (1-6*x)/(1-8*x+6*x^2).

A199479 Triangle T(n,k), read by rows, given by (1,0,0,0,0,0,0,0,0,0,...) DELTA (1,1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 9, 5, 1, 7, 20, 27, 13, 1, 9, 35, 73, 80, 34, 1, 11, 54, 151, 252, 234, 89, 1, 13, 77, 269, 597, 837, 677, 233, 1, 15, 104, 435, 1199, 2225, 2702, 1941, 610, 1, 17, 135, 657, 2158, 4956, 7943, 8533, 5523, 1597
Offset: 0

Views

Author

Philippe Deléham, Nov 06 2011

Keywords

Comments

Mirror image of triangle in A147703.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  9,  5;
  1,  7, 20, 27, 13;
  1,  9, 35, 73, 80, 34;
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A152620(n), A152594(n), A000007(n), A000012(n), A006012(n), A152596(n), A152599(n) for x=-3,-2,-1,0,1,2,3 respectively.
T(n,n) = A001519(n).
G.f.: (1-2y*x)/(1-(1+3y)*x+y*(1+y)*x^2).
Showing 1-2 of 2 results.