cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152662 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} for which k is the maximal number of initial odd entries (0 <= k <= ceiling(n/2)).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 2, 12, 8, 4, 48, 36, 24, 12, 360, 216, 108, 36, 2160, 1440, 864, 432, 144, 20160, 11520, 5760, 2304, 576, 161280, 100800, 57600, 28800, 11520, 2880, 1814400, 1008000, 504000, 216000, 72000, 14400, 18144000, 10886400, 6048000, 3024000
Offset: 0

Views

Author

Emeric Deutsch, Dec 13 2008

Keywords

Comments

Sum of entries in row n is n! (A000142).
Row n has 1 + ceiling(n/2) entries.
T(n,0) = A052591(n-1) for n>=1.
Sum_{k=0..ceiling(n/2)} k*T(n,k) = A152663(n).

Examples

			T(3,0)=2 because we have 213 and 231.
T(4,2)=4 because we have 1324, 1342, 3124 and 3142.
Triangle starts:
    1;
    0,   1;
    1,   1;
    2,   2,   2;
   12,   8,   4;
   48,  36,  24,  12;
  360, 216, 108,  36;
  ...
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if n=0 and k=0 then 1 elif n = 1 and k = 0 then 0 elif n = 1 and k = 1 then 1 elif `mod`(n, 2) = 1 then (1/2)*(n-1)*binomial((1/2)*n+1/2, k)*factorial(k)*factorial(n-1-k) else (1/2)*n*binomial((1/2)*n, k)*factorial(k)*factorial(n-1-k) end if end proc: for n from 0 to 11 do seq(T(n, k), k = 0 .. ceil((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n == 0 && k == 0, 1, n == 1 && k == 1, 1, OddQ[n], (n - 1)/2*k!*(n - k - 1)!*Binomial[(n - 1)/2 + 1, k], True, n/2*k!*(n - k - 1)!*Binomial[n/2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, Ceiling[n/2]}] // Flatten (* Jean-François Alcover, Apr 04 2024 *)

Formula

T(2n+1,k) = n*k!*(2n-k)!*binomial(n+1,k) (n>= 1);
T(2n,k) = n*k!*(2n-1-k)!*binomial(n,k).
From Alois P. Heinz, Apr 02 2024: (Start)
Sum_{k>=0} (k+1) * T(n,k) = A256881(n+1).
T(n,ceiling(n/2)) = A010551(n). (End)

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Apr 02 2024