cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152666 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k runs of odd entries (1<=k<=ceiling(n/2)). For example, the permutation 321756498 has 3 runs of odd entries: 3, 175 and 9.

Original entry on oeis.org

1, 2, 4, 2, 12, 12, 36, 72, 12, 144, 432, 144, 576, 2592, 1728, 144, 2880, 17280, 17280, 2880, 14400, 115200, 172800, 57600, 2880, 86400, 864000, 1728000, 864000, 86400, 518400, 6480000, 17280000, 12960000, 2592000, 86400, 3628800, 54432000
Offset: 1

Views

Author

Emeric Deutsch, Dec 14 2008

Keywords

Comments

Sum of entries in row n is n! (=A000142(n)).
Row n contains ceiling(n/2) entries.
T(n,1) = A010551(n+1).
Sum_{k>=1} k*T(n,k) = A052618(n-1).
Mirror image of A134435.

Examples

			T(3,2)=2 because we have 123 and 321.
T(4,2)=12 because we have 1234, 1432, 3214, 3412, 1243, 3241 and their reverses.
Triangle starts:
1;
2;
4,2;
12,12;
36,72,12;
144,432,144;
576,2592,1728,144.
		

Crossrefs

Programs

  • Maple
    ae := proc (n, k) options operator, arrow: factorial(n)^2*binomial(n+1, k)*binomial(n-1, k-1) end proc: ao := proc (n, k) options operator, arrow: factorial(n)*factorial(n+1)*binomial(n, k-1)*binomial(n+1, k) end proc: T := proc (n, k) if `mod`(n, 2) = 0 then ae((1/2)*n, k) else ao((1/2)*n-1/2, k) end if end proc: for n to 12 do seq(T(n, k), k = 1 .. ceil((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_?EvenQ, k_] := (n/2)!^2*Binomial[n/2 - 1, k - 1]*Binomial[n/2 + 1, k]; T[n_?OddQ, k_] := ((n - 1)/2 + 1)!*((n - 1)/2)!*Binomial[(n - 1)/2 + 1, k]*Binomial[(n - 1)/2, k - 1]; Table[T[n, k], {n, 1, 12}, {k, 1, Floor[(n + 1)/2]}] // Flatten (* Jean-François Alcover, Nov 13 2016 *)

Formula

T(2n,k) = (n!)^2*binomial(n+1,k)*binomial(n-1,k-1).
T(2n+1,k) = n!*(n+1)!*binomial(n,k-1)*binomial(n+1,k).