A010551 Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.
1, 1, 1, 2, 4, 12, 36, 144, 576, 2880, 14400, 86400, 518400, 3628800, 25401600, 203212800, 1625702400, 14631321600, 131681894400, 1316818944000, 13168189440000, 144850083840000, 1593350922240000, 19120211066880000, 229442532802560000, 2982752926433280000
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 144*x^7 + 576*x^8 + ... For n = 7, a(n) = 1*1*2*2*3*3*4 (7 factors), which is 144. - _Michael B. Porter_, Jul 03 2016
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Edinah K. Gnang and Isaac Wass, Growing Graceful and Harmonious Trees, arXiv:1808.05551 [math.CO], 2018-2020. See proposition 1.
- Frether Getachew Kebede and Fanja Rakotondrajao, Parity alternating permutations starting with an odd integer, arXiv:2101.09125 [math.CO], 2021.
- Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), #12.9.1.
Programs
-
Haskell
a010551 n = a010551_list !! n a010551_list = scanl (*) 1 a008619_list -- Reinhard Zumkeller, Apr 02 2012
-
Magma
[Factorial(n div 2)*Factorial((n+1) div 2): n in [0..25]]; // Vincenzo Librandi Jan 17 2018
-
Maple
A010551 := proc(n) option remember; if n <= 1 then 1 else procname(n-1) *trunc( (n+1)/2 ); fi; end:
-
Mathematica
FoldList[ Times, 1, Flatten@ Array[ {#, #} &, 11]] (* Robert G. Wilson v, Jul 14 2010 *)
-
PARI
{a(n)=local(X=x+x*O(x^n)); 1/polcoeff(besseli(0,2*X)+X*besseli(1,2*X),n,x)} \\ Paul D. Hanna, Apr 07 2005
-
PARI
A010551(n)=(n\2)!*((n+1)\2)! \\ Michael Somos, Dec 29 2012, edited by M. F. Hasler, Nov 26 2017
-
Python
def O(f): c = 1 while len(f) > 1: f.sort() m = abs(f[0] - f[1]) c *= m f[0] = m f.pop(1) return c a = lambda n: O(list(range(1, n+1))) print([a(n) for n in range(0, 26)]) # Darío Clavijo, Aug 24 2024
Formula
a(n) = floor(n/2)!*floor((n+1)/2)! is the number of permutations p of {1, 2, 3, ..., n} such that for every i, i and p(i) have the same parity, i.e., p(i) - i is even. - Avi Peretz (njk(AT)netvision.net.il), Feb 22 2001
a(n) = n!/binomial(n, floor(n/2)). - Paul Barry, Sep 12 2004
G.f.: Sum_{n>=0} x^n/a(n) = besseli(0, 2*x) + x*besseli(1, 2*x). - Paul D. Hanna, Apr 07 2005
E.g.f.: 1/(1-x/2) + (1/2)/(1-x/2)*arccos(1-x^2/2)/sqrt(1-x^2/4). - Paul D. Hanna, Aug 28 2005
G.f.: G(0) where G(k) = 1 + (k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012
D-finite with recurrence: 4*a(n) - 2*a(n-1) - n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
a(n) = a(n-1) * (a(n-2) + a(n-3)) / a(n-3) for all n >= 3. - Michael Somos, Dec 29 2012
G.f.: 1 + x + x^2*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 - (k+2)/(1-x/(x - 1/(1 - (k+2)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-x/(x - 1/(1 - (k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*G(0), where G(k) = 1 + x*(k+1)/(1 - x*(k+2)/(x*(k+2) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: Q(0), where Q(k) = 1 + x*(k+1)/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
Sum_{n >= 1} 1/a(n) = A130820. - Peter Bala, Jul 02 2016
a(n) ~ sqrt(Pi*n) * n! / 2^(n + 1/2). - Vaclav Kotesovec, Oct 02 2018
Sum_{n>=0} (-1)^n/a(n) = A229020. - Amiram Eldar, Apr 12 2021
Comments