cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Davide Oliveri

Davide Oliveri's wiki page.

Davide Oliveri has authored 1 sequences.

A361938 a(0)=1, a(1)=0; a(n) = floor(n/2)*(a(n-1) + a(n-2)).

Original entry on oeis.org

1, 0, 1, 1, 4, 10, 42, 156, 792, 3792, 22920, 133560, 938880, 6434640, 51614640, 406344960, 3663676800, 32560174080, 326014657920, 3227173488000, 35531881459200, 387590549472000, 4654346740243200, 55461310186867200, 721387883125324800, 9322190319746304000
Offset: 0

Author

Davide Oliveri, Mar 31 2023

Keywords

Comments

For n <= 1000000, n prime divides a(n) only when n=5 and n composite does not divide a(n) only when n = 9. Is this always so?

Examples

			a(0) = 1;
a(1) = 0;
a(2) = floor(2/2)*(a(1) + a(0)) = 1;
a(3) = floor(3/2)*(a(2) + a(1)) = 1;
a(4) = floor(4/2)*(a(3) + a(2)) = 4;
a(5) = floor(5/2)*(a(4) + a(3)) = 10.
		

Crossrefs

Cf. A055596.

Programs

  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := a[n] = Floor[n/2] * (a[n - 1] + a[n - 2]); Array[a, 30, 0] (* Amiram Eldar, Apr 05 2023 *)
  • Python
    def seqx_it(n):
      a0 = 1
      a1 = 0
      sequence_store = [a0,a1]
      for i in range (2,n):
        a2 = (i//2) * (a1 + a0)
        sequence_store.append(a2)
        a0 = a1
        a1 = a2
      return sequence_store

Formula

a(0)=1, a(1)=0; a(n) = floor(n/2)*(a(n-1) + a(n-2)).