A052558
a(n) = n! *((-1)^n + 2*n + 3)/4.
Original entry on oeis.org
1, 1, 4, 12, 72, 360, 2880, 20160, 201600, 1814400, 21772800, 239500800, 3353011200, 43589145600, 697426329600, 10461394944000, 188305108992000, 3201186852864000, 64023737057280000, 1216451004088320000, 26761922089943040000, 562000363888803840000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
List([0..30], n-> ((-1)^n +2*n +3)*Factorial(n)/4); # G. C. Greubel, May 07 2019
-
[((-1)^n +2*n +3)*Factorial(n)/4: n in [0..30]]; // G. C. Greubel, May 07 2019
-
spec := [S,{S=Prod(Sequence(Z),Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[n!((-1)^n+2n+3)/4,{n,0,30}] (* Harvey P. Dale, Aug 16 2014 *)
-
a(n)=if(n<0,0,(1+n\2)*n!)
-
a(n)=if(n<0, 0, n!*polcoeff(1/(1-x)/(1-x^2)+x*O(x^n), n))
-
[((-1)^n +2*n +3)*factorial(n)/4 for n in (0..30)] # G. C. Greubel, May 07 2019
A077611
Number of adjacent pairs of form (odd,odd) among all permutations of {1,2,...,n}.
Original entry on oeis.org
0, 0, 4, 12, 144, 720, 8640, 60480, 806400, 7257600, 108864000, 1197504000, 20118067200, 261534873600, 4881984307200, 73229764608000, 1506440871936000, 25609494822912000, 576213633515520000, 10948059036794880000, 267619220899430400000, 5620003638888038400000
Offset: 1
For n=4, the a(4) = 12 permutations of degree 5 starting and ending with an even number are 21354, 21534, 23154, 23514, 25134, 25314, 41352, 41532, 43152, 43512, 45132, 45312.
-
[Factorial(n-1)*(2*n*(n-1)-(2*n-1)*(-1)^n-1)/8 : n in [1..30]]; // Vincenzo Librandi, Nov 16 2011
-
Table[Ceiling[n/2] Ceiling[n/2 - 1] (n - 1)!, {n, 22}] (* Michael De Vlieger, Aug 20 2017 *)
A152666
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k runs of odd entries (1<=k<=ceiling(n/2)). For example, the permutation 321756498 has 3 runs of odd entries: 3, 175 and 9.
Original entry on oeis.org
1, 2, 4, 2, 12, 12, 36, 72, 12, 144, 432, 144, 576, 2592, 1728, 144, 2880, 17280, 17280, 2880, 14400, 115200, 172800, 57600, 2880, 86400, 864000, 1728000, 864000, 86400, 518400, 6480000, 17280000, 12960000, 2592000, 86400, 3628800, 54432000
Offset: 1
T(3,2)=2 because we have 123 and 321.
T(4,2)=12 because we have 1234, 1432, 3214, 3412, 1243, 3241 and their reverses.
Triangle starts:
1;
2;
4,2;
12,12;
36,72,12;
144,432,144;
576,2592,1728,144.
-
ae := proc (n, k) options operator, arrow: factorial(n)^2*binomial(n+1, k)*binomial(n-1, k-1) end proc: ao := proc (n, k) options operator, arrow: factorial(n)*factorial(n+1)*binomial(n, k-1)*binomial(n+1, k) end proc: T := proc (n, k) if `mod`(n, 2) = 0 then ae((1/2)*n, k) else ao((1/2)*n-1/2, k) end if end proc: for n to 12 do seq(T(n, k), k = 1 .. ceil((1/2)*n)) end do; # yields sequence in triangular form
-
T[n_?EvenQ, k_] := (n/2)!^2*Binomial[n/2 - 1, k - 1]*Binomial[n/2 + 1, k]; T[n_?OddQ, k_] := ((n - 1)/2 + 1)!*((n - 1)/2)!*Binomial[(n - 1)/2 + 1, k]*Binomial[(n - 1)/2, k - 1]; Table[T[n, k], {n, 1, 12}, {k, 1, Floor[(n + 1)/2]}] // Flatten (* Jean-François Alcover, Nov 13 2016 *)
A199495
Number of permutations of [n] starting and ending with an odd number.
Original entry on oeis.org
0, 1, 0, 2, 4, 36, 144, 1440, 8640, 100800, 806400, 10886400, 108864000, 1676505600, 20118067200, 348713164800, 4881984307200, 94152554496000, 1506440871936000, 32011868528640000, 576213633515520000, 13380961044971520000, 267619220899430400000
Offset: 0
-
a:= n-> `if`(n<2, n, ceil(n/2)*(ceil(n/2)-1)*(n-2)!):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 07 2011
A152668
Number of runs of even entries in all permutations of {1,2,...,n} (the permutation 274831659 has 3 runs of even entries: 2, 48 and 6).
Original entry on oeis.org
2, 6, 36, 192, 1440, 10800, 100800, 967680, 10886400, 127008000, 1676505600, 22992076800, 348713164800, 5492232345600, 94152554496000, 1673823191040000, 32011868528640000, 633834996867072000, 13380961044971520000
Offset: 2
a(3) = 6 because each of the permutations 123, 132, 213, 231, 312, 321 has exactly 1 run of even entries.
-
ae := proc (n) options operator, arrow: (1/2)*factorial(2*n)*(n+1) end proc: ao := proc (n) options operator, arrow: n*(n+2)*factorial(2*n) end proc: a := proc (n) if `mod`(n, 2) = 0 then ae((1/2)*n) else ao((1/2)*n-1/2) end if end proc; seq(a(n), n = 2 .. 20);
-
a[n_] := If[EvenQ[n], (n/2+1)n!/2, ((n-1)/2)((n-1)/2+2)(n-1)!];
Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Apr 09 2024 *)
Showing 1-5 of 5 results.
Comments