cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152680 a(n) = 4*A005098(n) = A002144(n) - 1.

Original entry on oeis.org

4, 12, 16, 28, 36, 40, 52, 60, 72, 88, 96, 100, 108, 112, 136, 148, 156, 172, 180, 192, 196, 228, 232, 240, 256, 268, 276, 280, 292, 312, 316, 336, 348, 352, 372, 388, 396, 400, 408, 420, 432, 448, 456, 460, 508, 520, 540, 556, 568, 576, 592, 600, 612, 616
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2008

Keywords

Comments

If we take the 4 numbers 1, A002314(n), A152676(n), A152680(n) then the multiplication table modulo A002144(n) is isomorphic with the Latin square
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic with the multiplication table of {1,I,-I,-1} where I is sqrt(-1), A152680(n) is isomorphic with -1, A002314(n) with I or -I and A152676(n) vice versa -I or I.
1, A002314(n), A152676(n), A152680(n) are subfields of the Galois Field [A002144(n)].
Numbers n such that A172019(n) + 1 = primes - 1. - Giovanni Teofilatto, Feb 02 2010

Crossrefs

Programs

  • Mathematica
    aa = {}; Do[If[Mod[Prime[n], 4] == 1, AppendTo[aa, Prime[n] - 1]], {n, 1, 200}]; aa