cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A153287 First differences of A152738.

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 8, 9, 11, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 27, 29, 31, 31, 33, 34, 35, 37, 37, 39, 41, 41, 43, 43, 46, 46, 48, 48, 50, 52, 52, 54, 55, 56, 58, 58, 60, 62, 62, 64, 65, 66, 67, 69, 69, 72, 72, 73, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91
Offset: 0

Views

Author

Paul Curtz, Dec 23 2008

Keywords

A293407 Least integer k such that k/n^2 > (-1 + sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

0, 1, 3, 6, 10, 16, 23, 31, 40, 51, 62, 75, 89, 105, 122, 140, 159, 179, 201, 224, 248, 273, 300, 327, 356, 387, 418, 451, 485, 520, 557, 594, 633, 674, 715, 758, 801, 847, 893, 941, 989, 1039, 1091, 1143, 1197, 1252, 1308, 1366, 1424, 1484, 1546, 1608, 1672
Offset: 0

Views

Author

Clark Kimberling, Oct 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = -1+GoldenRatio;
    Table[Floor[r*n^2], {n, 0, z}];   (* A152738 *)
    Table[Ceiling[r*n^2], {n, 0, z}]; (* A293407 *)
    Table[Round[r*n^2], {n, 0, z}];   (* A293408 *)

Formula

a(n) = ceiling(r*n^2), where r = (-1 + sqrt(5))/2.
a(n) = A152738(n) + 1 for n > 0.

A293408 The integer k that minimizes |k/n^2 - 1/tau|, where tau = (1+sqrt(5))/2 (golden ratio).

Original entry on oeis.org

0, 1, 2, 6, 10, 15, 22, 30, 40, 50, 62, 75, 89, 104, 121, 139, 158, 179, 200, 223, 247, 273, 299, 327, 356, 386, 418, 451, 485, 520, 556, 594, 633, 673, 714, 757, 801, 846, 892, 940, 989, 1039, 1090, 1143, 1197, 1252, 1308, 1365, 1424, 1484, 1545, 1608, 1671
Offset: 0

Views

Author

Clark Kimberling, Oct 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = -11+GoldenRatio;
    Table[Floor[r*n^2], {n, 0, z}];   (* A152738 *)
    Table[Ceiling[r*n^2], {n, 0, z}]; (* A293407 *)
    Table[Round[r*n^2], {n, 0, z}];   (* A293408 *)

Formula

a(n) = floor(1/2 + (n^2)/tau).
a(n) = A152738(n) if (fractional part of (1/tau)*n^2) < 1/2, else a(n) = A293407(n).
Showing 1-3 of 3 results.