cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152800 Irregular triangle read by rows: the q-analog of the Euler numbers; expansion of the arithmetic inverse of the q-cosine of x.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 3, 5, 8, 10, 10, 9, 7, 5, 2, 1, 0, 0, 0, 1, 4, 10, 21, 36, 55, 78, 101, 122, 138, 145, 143, 134, 117, 95, 72, 50, 32, 18, 9, 3, 1, 0, 0, 0, 0, 1, 5, 16, 41, 87, 164, 283, 452, 679, 967, 1311, 1700, 2118, 2540, 2937, 3282, 3546, 3706, 3751, 3676, 3487
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2008

Keywords

Comments

The q-cosine is cos_q(x,q) = Sum_{n>=0} (-1)^n*x^(2n)/faq(2n,q) and faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			Nonzero coefficients in row n range from x^(n-1) to x^(2n(n-1)) for n>0.
Triangle begins:
  1;
  1;
  0,1,2,1,1;
  0,0,1,3,5,8,10,10,9,7,5,2,1;
  0,0,0,1,4,10,21,36,55,78,101,122,138,145,143,134,117,95,72,50,32,18,9,3,1;
  0,0,0,0,1,5,16,41,87,164,283,452,679,967,1311,1700,2118,2540,2937,3282,3546,3706,3751,3676,3487,3202,2842,2436,2014,1602,1223,894,622,409,253,145,76,35,14,4,1;
  ...
Explicit expansion of g.f.:
1/cos_q(x,q) = 1 + x^2/faq(2,q) + x^4*(q + 2*q^2 + q^3 + q^4)/faq(4,q) +
x^6*(q^2 + 3*q^3 + 5*q^4 + 8*q^5 + 10*q^6 + 10*q^7 + 9*q^8 + 7*q^9 + 5*q^10 + 2*q^11 + q^12)/faq(6,q) +
x^8*(q^3 + 4*q^4 + 10*q^5 + 21*q^6 + 36*q^7 + 55*q^8 + 78*q^9 + 101*q^10 + 122*q^11 + 138*q^12 + 145*q^13 + 143*q^14 + 134*q^15 + 117*q^16 + 95*q^17 + 72*q^18 + 50*q^19 + 32*q^20 + 18*q^21 + 9*q^22 + 3*q^23 + q^24)/faq(8,q) +...
		

Crossrefs

Cf. A000364 (row sums=Euler numbers); A152801, A152802, A152803, A152804.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(1/sum(m=0,n,(-1)^m*x^(2*m)/prod(j=1,2*m,(q^j-1)/(q-1))+x*O(x^(2*n+1))),2*n,x)*prod(j=1,2*n,(q^j-1)/(q-1)),k,q)}
    for(n=0,8,for(k=0,2*n*(n-1),print1(T(n,k),", "));print(""))

Formula

G.f.: 1/cos_q(x,q) = Sum_{n>=0} Sum_{k=0..2n(n-1)} T(n,k)*q^k*x^(2n)/faq(2n,q).
G.f.: 1/cos(x) = Sum_{n>=1} Sum_{k=0..2n(n-1)} T(n,k)*x^(2n)/(2n)!.
Sum_{k=0..2n(n-1)} T(n,k) = A000364(n).
Sum_{k=0..2n(n-1)} T(n,k)*(-1)^k = 1 for n>=0.
Sum_{k=0..2n(n-1)} T(n,k)*I^k = (-1)^[n/2] for n>=0 where I^2=-1.
Sum_{k=0..2n(n-1)} T(n,k)*exp(2*Pi*I*k/n) = 1 for n>0.