cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152800 Irregular triangle read by rows: the q-analog of the Euler numbers; expansion of the arithmetic inverse of the q-cosine of x.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 3, 5, 8, 10, 10, 9, 7, 5, 2, 1, 0, 0, 0, 1, 4, 10, 21, 36, 55, 78, 101, 122, 138, 145, 143, 134, 117, 95, 72, 50, 32, 18, 9, 3, 1, 0, 0, 0, 0, 1, 5, 16, 41, 87, 164, 283, 452, 679, 967, 1311, 1700, 2118, 2540, 2937, 3282, 3546, 3706, 3751, 3676, 3487
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2008

Keywords

Comments

The q-cosine is cos_q(x,q) = Sum_{n>=0} (-1)^n*x^(2n)/faq(2n,q) and faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

Examples

			Nonzero coefficients in row n range from x^(n-1) to x^(2n(n-1)) for n>0.
Triangle begins:
  1;
  1;
  0,1,2,1,1;
  0,0,1,3,5,8,10,10,9,7,5,2,1;
  0,0,0,1,4,10,21,36,55,78,101,122,138,145,143,134,117,95,72,50,32,18,9,3,1;
  0,0,0,0,1,5,16,41,87,164,283,452,679,967,1311,1700,2118,2540,2937,3282,3546,3706,3751,3676,3487,3202,2842,2436,2014,1602,1223,894,622,409,253,145,76,35,14,4,1;
  ...
Explicit expansion of g.f.:
1/cos_q(x,q) = 1 + x^2/faq(2,q) + x^4*(q + 2*q^2 + q^3 + q^4)/faq(4,q) +
x^6*(q^2 + 3*q^3 + 5*q^4 + 8*q^5 + 10*q^6 + 10*q^7 + 9*q^8 + 7*q^9 + 5*q^10 + 2*q^11 + q^12)/faq(6,q) +
x^8*(q^3 + 4*q^4 + 10*q^5 + 21*q^6 + 36*q^7 + 55*q^8 + 78*q^9 + 101*q^10 + 122*q^11 + 138*q^12 + 145*q^13 + 143*q^14 + 134*q^15 + 117*q^16 + 95*q^17 + 72*q^18 + 50*q^19 + 32*q^20 + 18*q^21 + 9*q^22 + 3*q^23 + q^24)/faq(8,q) +...
		

Crossrefs

Cf. A000364 (row sums=Euler numbers); A152801, A152802, A152803, A152804.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(1/sum(m=0,n,(-1)^m*x^(2*m)/prod(j=1,2*m,(q^j-1)/(q-1))+x*O(x^(2*n+1))),2*n,x)*prod(j=1,2*n,(q^j-1)/(q-1)),k,q)}
    for(n=0,8,for(k=0,2*n*(n-1),print1(T(n,k),", "));print(""))

Formula

G.f.: 1/cos_q(x,q) = Sum_{n>=0} Sum_{k=0..2n(n-1)} T(n,k)*q^k*x^(2n)/faq(2n,q).
G.f.: 1/cos(x) = Sum_{n>=1} Sum_{k=0..2n(n-1)} T(n,k)*x^(2n)/(2n)!.
Sum_{k=0..2n(n-1)} T(n,k) = A000364(n).
Sum_{k=0..2n(n-1)} T(n,k)*(-1)^k = 1 for n>=0.
Sum_{k=0..2n(n-1)} T(n,k)*I^k = (-1)^[n/2] for n>=0 where I^2=-1.
Sum_{k=0..2n(n-1)} T(n,k)*exp(2*Pi*I*k/n) = 1 for n>0.

A152801 a(n) = A152800(n+1,2n) for n>=0.

Original entry on oeis.org

1, 2, 5, 21, 87, 378, 1682, 7596, 34688, 159724, 740243, 3448579, 16134813, 75760294, 356811308, 1684882778, 7974184903, 37815280813, 179644013528, 854749753320, 4072634928710, 19429522879905, 92799859650401
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2008

Keywords

Comments

Triangle A152800 gives a q-analog of the Euler numbers.

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(polcoeff(1/sum(m=0,n+1,(-1)^m*x^(2*m)/prod(j=1,2*m,(q^j-1)/(q-1))+x*O(x^(2*n+2))),2*n+2,x)*prod(j=1,2*n+2,(q^j-1)/(q-1)),2*n,q)}

A260788 Normalized volume of Newton polytope P(n) for a flag space with second Betti number 1.

Original entry on oeis.org

2, 6, 20, 82, 344, 1598
Offset: 2

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Crossrefs

A260789 A260788(n)/2.

Original entry on oeis.org

1, 3, 10, 41, 172, 799
Offset: 2

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Comments

The late M. M. Graev asked if the similarity with A152802 is merely a coincidence, or a reflection of the fact that the Newton polytope P(7) is not realizable.

Crossrefs

A260790 Number of facets of Newton polytope P(n) for a flag space with second Betti number 1.

Original entry on oeis.org

2, 4, 7, 16, 36, 100
Offset: 2

Views

Author

N. J. A. Sloane, Aug 05 2015

Keywords

Crossrefs

Showing 1-5 of 5 results.