A152807 G.f.: limit of the ratio of the g.f.s of adjacent rows in triangle A152805.
1, 1, 4, 16, 72, 340, 1688, 8648, 45468, 243832, 1328800, 7337500, 40965984, 230864496, 1311526532, 7502799104, 43183861352, 249897858164, 1453076715976, 8485587751112, 49745923115916, 292655237446616, 1727193226708608
Offset: 0
Keywords
Examples
G.f.: 1 + q + 4*q^2 + 16*q^3 + 72*q^4 + 340*q^5 + 1688*q^6 + 8648*q^7 +... SAMPLE ROW G.F.s OF TRIANGLE A152805: R_4(q) = -1 + 3*q + 3*q^2 - 3*q^4 - 3*q^5 + q^6; R_5(q) = -1 + 4*q + 3*q^2 - 3*q^3 - 4*q^4 - 14*q^5 - 4*q^6 - 3*q^7 +...; R_6(q) = -1 + 5*q + 2*q^2 - 9*q^3 - 11*q^4 - 19*q^5 - 16*q^6 - 11*q^7 +... RATIO OF ROW G.F.s approach the g.f. of this sequence: R_4(q)/R_5(q) = 1 + q + 4*q^2 + 16*q^3 + 72*q^4 + 309*q^5 +... R_5(q)/R_6(q) = 1 + q + 4*q^2 + 16*q^3 + 72*q^4 + 340*q^5 +... Limit_{n->infty} R_n(q)/R_{n+1}(q) = 1 + q + 4*q^2 + 16*q^3 + 72*q^4 +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
(* Calculation of constants {d,c}: *) {1/r, -s*Log[r]*Sqrt[r*Derivative[0, 1][QPochhammer][2*s, r] / (2*Pi*QPolyGamma[1, Log[2*s]/Log[r], r])]} /. FindRoot[{1 + QPochhammer[2*s, r] == 0, Log[1 - r] + QPolyGamma[0, Log[2*s]/Log[r], r] == 0}, {r, 1/6}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Feb 18 2024 *)
-
PARI
/* Limit of n-th row polynomial in q of triangle A152805 */ {faq(n,q) = prod(j=1, n, (q^j-1)/(q-1))} \\ q-factorial of n {R(n) = faq(n,q) * polcoeff( 2/(1 + sum(m=0, n, (2*x)^m/faq(m,q) + x*O(x^(n+2)))), n, x)} {a(n) = polcoeff(R(n)/R(n+1) + q*O(q^n), n, q)} for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 18 2024
-
PARI
/* A(q) satisfies -1 = Product_{n>=0} (1 - 2*q^n*A(q)) */ {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0); A[#A] = polcoeff( 1 + prod(k=0,#A, 1 - 2*x^k*Ser(A))/2, #A-1, x) );A[n+1]} for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Feb 18 2024
Formula
From Paul D. Hanna, Feb 18 2024: (Start)
G.f. A(q) = Sum_{n>=0} a(n)*q^n satisfies the following formulas.
(1) A(q) = limit_{n->oo} R_{n}(q) / R_{n+1}(q) where R_{n}(q) = faq(n,q) * [x^n] 2/(1 + e_q(2*x,q)) is the n-th row polynomial in q of triangle A152805, e_q(x,q) is the q-exponential of x and faq(n,q) is the q-factorial of n.
(2) -1 = Product_{n>=0} (1 - 2*q^n*A(q)).
(3) -1 = Sum_{n>=0} (-2)^n * q^(n*(n-1)/2) * A(q)^n / Product_{k=1..n} (1 - q^k).
(End)
From Vaclav Kotesovec, Feb 18 2024: (Start)
Formula (2) can be rewritten as the functional equation QPochhammer(2*y,x) = -1.
a(n) ~ c * d^n / n^(3/2), where d = 6.3144728881807672285224679191139428... and c = 0.461350895847503384343179658336... (End)
Comments