A152810 Let the binary expansion of n be n = Sum_{k} 2^{r_k}, let e(n) be the number of r_k's that are even, o(n) the number that are odd; sequence gives odd n such that e(n) > o(n) and e(n)-o(n) == 1 or 2 (mod 6).
1, 5, 7, 13, 17, 19, 23, 25, 29, 31, 37, 49, 53, 55, 61, 65, 67, 71, 73, 77, 79, 83, 89, 91, 95, 97, 101, 103, 109, 113, 115, 119, 121, 125, 127, 133, 145, 149, 151, 157, 181, 193, 197, 199, 205, 209, 211, 215, 217, 221, 223, 229, 241, 245, 247, 253, 257, 259
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
aQ[n_] := Module[{d = Reverse[IntegerDigits[n, 2]]}, e = Total@d[[1 ;; -1 ;; 2]]; o = Total@d[[2 ;; -1 ;; 2]]; e > o && MemberQ[{1, 2}, Mod[e - o, 6]]]; Select[Range[1, 260, 2], aQ] (* Amiram Eldar, Sep 12 2019 *)
Extensions
More terms from Amiram Eldar, Sep 12 2019
Comments