cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152813 a(n) = 2*n^2 + 10*n + 3.

Original entry on oeis.org

3, 15, 31, 51, 75, 103, 135, 171, 211, 255, 303, 355, 411, 471, 535, 603, 675, 751, 831, 915, 1003, 1095, 1191, 1291, 1395, 1503, 1615, 1731, 1851, 1975, 2103, 2235, 2371, 2511, 2655, 2803, 2955, 3111, 3271, 3435, 3603, 3775, 3951, 4131, 4315, 4503, 4695
Offset: 0

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Nonzero x values at solutions of Diophantine equation 2*x^3 + 19*x^2 = y^2.
Nonnegative integers m such that 2*m + 19 is a square. - Vincenzo Librandi, Mar 01 2013

Crossrefs

Cf. A001844.

Programs

  • Magma
    I:=[3, 15, 31]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 22 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {3, 15, 31}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
    CoefficientList[Series[(3 + 6*x - 5*x^2)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Jan 04 2013 *)
  • PARI
    for(n=0, 40, print1(2*n^2+10*n+3", ")); \\ Vincenzo Librandi, Feb 22 2012

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012
G.f.: (3 + 6*x - 5*x^2)/(1 -x)^3. - Vincenzo Librandi, Jan 04 2013
a(n-1) = 2*n^2 + 2*n - 9. - Avi Friedlich, Mar 27 2015
a(n) = A001844(n+2) - 10. - Robert Israel, Mar 27 2015
Sum_{n>=0} 1/a(n) = 14/45 + tan(sqrt(19)*Pi/2)*Pi/(2*sqrt(19)). - Amiram Eldar, Mar 02 2023
E.g.f.: (3 + 12*x + 2*x^2)*exp(x). - Elmo R. Oliveira, Oct 18 2024

Extensions

Edited and extended by Jon E. Schoenfield, Jun 17 2010