cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152874 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} with k parity changes (n>=2; 1<=k <=n-1); the permutation 372185946 has 5 parity changes: 37-2-1-8-59-46.

Original entry on oeis.org

2, 4, 2, 8, 8, 8, 24, 36, 48, 12, 72, 144, 288, 144, 72, 288, 720, 1728, 1296, 864, 144, 1152, 3456, 10368, 10368, 10368, 3456, 1152, 5760, 20160, 69120, 86400, 103680, 51840, 23040, 2880, 28800, 115200, 460800, 691200, 1036800, 691200, 460800, 115200, 28800
Offset: 2

Views

Author

Emeric Deutsch, Dec 15 2008

Keywords

Comments

Sum of entries in row n is n! (A000142(n)).
T(n,n-1) = A092186(n).
T(n,1) = A152875(n).
Sum_{k=1..n-1} k*T(n,k) = 2*A077613(n).

Examples

			T(4,3) = 8 because we have 1243, 1423, 4132, 4312, 2134, 2314, 3241 and 3421.
Triangle starts:
   2;
   4,   2;
   8,   8,   8;
  24,  36,  48,  12;
  72, 144, 288, 144,  72;
  ...
		

Crossrefs

T(2n,n) gives A363180.

Programs

  • Maple
    ae := proc (n, k) if `mod`(k, 2) = 0 then 2*factorial(n)^2*binomial(n-1, (1/2)*k-1)*binomial(n-1, (1/2)*k) else 2*factorial(n)^2*binomial(n-1, (1/2)*k-1/2)^2 end if end proc: ao := proc (n, k) if `mod`(k, 2) = 0 then factorial(n)*factorial(n+1)*(binomial(n, (1/2)*k)*binomial(n-1, (1/2)*k-1)+binomial(n, (1/2)*k-1)*binomial(n-1, (1/2)*k)) else 2*factorial(n)*factorial(n+1)*binomial(n, (1/2)*k-1/2)*binomial(n-1, (1/2)*k-1/2) end if end proc: T := proc (n, k) if `mod`(n, 2) = 0 then ae((1/2)*n, k) else ao((1/2)*n-1/2, k) end if end proc: for n from 2 to 10 do seq(T(n, k), k = 1 .. n-1) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(x+y=0, 1, `if`(x>0,
          b(x-1, y, z)*x, 0)+`if`(y>0, expand(b(y-1, x, z)*y*t), 0))
        end:
    T:= n-> (h-> (p-> seq(coeff(p, z, i), i=1..n-1))(b(h, n-h, 1)))(iquo(n, 2)):
    seq(T(n), n=2..12);  # Alois P. Heinz, May 23 2023
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x + y == 0, 1, If[x > 0, b[x - 1, y, z]*x, 0] + If[y > 0, Expand[b[y - 1, x, z]*y*t], 0]];
    T[n_] := Table[Coefficient[#, z, i], {i, 1, n-1}]&[b[#, n-#, 1]]&[ Quotient[n, 2]];
    Table[T[n], {n, 2, 12}] // Flatten (* Jean-François Alcover, Aug 16 2023, after Alois P. Heinz *)

Formula

T(2n,k) = (n!)^2*a(n,k), where a(n,k) is the number of lattice paths from (0,0) to (n,n) with steps N=(0,1) and E=(1,0) and having k turns;
a(n,k) = 2*binomial(n-1,k/2-1)*binomial(n-1,k/2) if k even;
a(n,k) = 2*(binomial(n-1,(k-1)/2))^2 if k odd.
T(2n+1,k) = n!*(n+1)!*b(n,k), where b(n,k) is the number of lattice paths from (0,0) to (n,n+1) with steps N=(0,1) and E=(1,0) and having k turns;
b(n,k) = binomial(n,k/2)*binomial(n-1,k/2-1) + binomial(n,k/2-1)*binomial(n-1,k/2) = (binomial(n,k/2))^2*k(2n-k+1)/(n(2n-k+2)) if k even;
b(n,k) = 2*binomial(n,(k-1)/2)*binomial(n-1,(k-1)/2) if k odd.