cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152875 Number of permutations of {1,2,...,n} with all odd entries preceding all even entries or all even entries preceding all odd entries.

Original entry on oeis.org

1, 1, 2, 4, 8, 24, 72, 288, 1152, 5760, 28800, 172800, 1036800, 7257600, 50803200, 406425600, 3251404800, 29262643200, 263363788800, 2633637888000, 26336378880000, 289700167680000, 3186701844480000, 38240422133760000, 458885065605120000, 5965505852866560000
Offset: 0

Views

Author

Emeric Deutsch, Dec 15 2008

Keywords

Comments

a(n) = A152874(n,1).

Examples

			a(4)=8 because we have 1324, 1342, 3124, 3142, 2413, 2431, 4213 and 4231.
		

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 0 then 2*factorial((1/2)*n)^2 else 2*factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2) end if end proc: seq(a(n), n = 2 .. 25);
    # second Maple program:
    a:= n-> (h-> 2^signum(h)*h!*(n-h)!)(iquo(n, 2)):
    seq(a(n), n=0..27);  # Alois P. Heinz, May 23 2023
    # third Maple program:
    a:= proc(n) option remember; `if`(n<4, n*(n-1)/2+1,
           n*(n-1)*a(n-2)/4 +a(n-1)/2)
        end:
    seq(a(n), n=0..27);  # Alois P. Heinz, May 23 2023
  • Mathematica
    a[n_] := Which[n<2, 1, EvenQ[n], 2(n/2)!^2, True, 2((n-1)/2)!*((n+1)/2)!];
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 16 2023 *)

Formula

a(2n) = 2n!^2; a(2n+1) = 2n!(n+1)! (for n>=2).
E.g.f.: 1+x+2*(4*sqrt(4-x^2)*arcsin(x/2) - 4x + 4x^2 + x^3 - x^4)/((2+x)*(2-x)^2).
D-finite with recurrence 4*a(n) -2*a(n-1) -n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 22 2022

Extensions

a(0)=a(1)=1 prepended by Alois P. Heinz, May 23 2023