cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152876 Number of permutations of {1,2,...,n} having no consecutive triples of the form (odd, even, odd) or (even, odd, even).

Original entry on oeis.org

1, 1, 2, 4, 16, 60, 288, 1584, 10368, 74880, 604800, 5356800, 51840000, 544320000, 6147187200, 74579097600, 962415820800, 13241346048000, 192255565824000, 2957575348224000, 47721518530560000, 811595019755520000, 14407079038894080000, 268390402745794560000
Offset: 0

Views

Author

Emeric Deutsch, Dec 17 2008

Keywords

Comments

Column 0 of A152877.

Examples

			a(3) = 4 because we have 132, 213, 231 and 312.
		

Crossrefs

Cf. A152877.

Programs

  • Maple
    ae := proc (n) options operator, arrow: 2*(sum((n^2-3*n*j+3*j^2)*binomial(n-j, j)^2/(n-j)^2, j = 0 .. floor((1/2)*n))) end proc: ao := proc (n) options operator, arrow: sum(binomial(n+1-k, k)*binomial(n-k, k)*(2*n^2+2*n-6*k*n-3*k+6*k^2)/((n+1-k)*(n-k)), k = 0 .. floor((1/2)*n)) end proc: a := proc (n) if `mod`(n, 2) = 0 then factorial((1/2)*n)^2*ae((1/2)*n) else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*ao((1/2)*n-1/2) end if end proc: 1, 1, seq(a(n), n = 2 .. 22);
    # second Maple program:
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1,
          `if`(t=4, 0, o*b(o-1, u, `if`(t=3, 5, 2)))+
          `if`(t=5, 0, u*b(o, u-1, `if`(t=2, 4, 3))))
        end:
    a:= n-> b(ceil(n/2), floor(n/2), 1):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 11 2013
  • Mathematica
    b[o_, u_, t_] := b[o, u, t] = If[u+o == 0, 1, If[t==4, 0, o*b[o-1, u, If[t==3, 5, 2]]] + If[t==5, 0, u*b[o, u-1, If[t==2, 4, 3]]]]; a[n_] := b[Ceiling[n/2], Floor[n/2], 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 29 2015, after Alois P. Heinz *)

Formula

a(2n) = (n!)^2*Sum_{j=0..floor(n/2)} (binomial(n-j, j))^2*(2*n^2 - 6*j*n + 6*j^2)/(n-j)^2;
a(2n+1) = n!*(n+1)!*Sum_{j=1..floor(n/2)} binomial(n+1-j, j)*binomial(n-j, j)*(2*n^2 + 2*n - 6*j*n - 3*j + 6*j^2)/((n+1-j)*(n-j)).
a(n) ~ 2 * 5^(-1/4) * ((1+sqrt(5))/4)^n * n!. - Vaclav Kotesovec, Sep 03 2014