cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152877 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k consecutive triples of the form (odd,even,odd) and (even,odd,even) (0<=k<=n-2).

Original entry on oeis.org

1, 1, 2, 4, 2, 16, 0, 8, 60, 24, 24, 12, 288, 144, 216, 0, 72, 1584, 1296, 1152, 576, 288, 144, 10368, 9216, 10368, 4608, 4608, 0, 1152, 74880, 83520, 86400, 60480, 31680, 17280, 5760, 2880, 604800, 748800, 892800, 576000, 460800, 172800, 144000, 0, 28800
Offset: 0

Views

Author

Emeric Deutsch, Dec 17 2008

Keywords

Comments

Row n has n-1 entries (n>=2).
Sum of entries in row n is n! (A000142(n)).
T(n,0) = A152876(n).
T(n,n-2) = A092186(n).
T(2n+1,2n-2) = A047677(n) = 2*n!*(n+1)!. - Alois P. Heinz, Nov 10 2013

Examples

			T(3,1) = 2 because we have 123 and 321.
Triangle starts:
      1;
      1;
      2;
      4,    2;
     16,    0,     8;
     60,   24,    24,   12;
    288,  144,   216,    0,   72;
   1584, 1296,  1152,  576,  288, 144;
  10368, 9216, 10368, 4608, 4608,   0, 1152;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, expand(
          o*b(o-1, u, [2, 2, 5, 5, 2][t])*`if`(t=4, x, 1)+
          u*b(o, u-1, [3, 4, 3, 3, 4][t])*`if`(t=5, x, 1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
                   b(ceil(n/2), floor(n/2), 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 10 2013
  • Mathematica
    b[o_, u_, t_] := b[o, u, t] = If[u+o == 0, 1, Expand[o*b[o-1, u, {2, 2, 5, 5, 2}[[t]]]*If[t == 4, x, 1] + u*b[o, u-1, {3, 4, 3, 3, 4}[[t]]]*If[t == 5, x, 1]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]] [b[Ceiling[n/2], Floor[n/2], 1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

It would be good to have a formula or generating function for this sequence (a formula for column 0 is given in A152876).
Sum_{k>=1} k*T(n,k) = A329550(n). - Alois P. Heinz, Nov 16 2019

Extensions

More terms from Alois P. Heinz, Nov 10 2013