A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A213777
Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = F(h+1), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 3, 2, 7, 5, 3, 15, 12, 8, 5, 30, 25, 19, 13, 8, 58, 50, 40, 31, 21, 13, 109, 96, 80, 65, 50, 34, 21, 201, 180, 154, 130, 105, 81, 55, 34, 365, 331, 289, 250, 210, 170, 131, 89, 55, 655, 600, 532, 469, 404, 340, 275, 212, 144, 89, 1164, 1075, 965, 863
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....3....7....15....30....58
2....5....12...25....50....96
3....8....19...40....80....154
5....13...31...65....130...250
8....21...50...105...210...404
13...34...81...170...340...654
-
b[n_] := Fibonacci[n]; c[n_] := Fibonacci[n + 1];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213777 *)
Table[t[n, n], {n, 1, 40}] (* A001870 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A152881 *)
A182001
Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).
Original entry on oeis.org
1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0
Triangle begins :
1;
3, 1;
4, 4, 1;
7, 9, 5, 1;
11, 20, 15, 6, 1;
18, 40, 40, 22, 7, 1;
29, 78, 95, 68, 30, 8, 1;
47, 147, 213, 185, 105, 39, 9, 1;
76, 272, 455, 466, 320, 152, 49, 10, 1;
123, 495, 940, 1106, 891, 511, 210, 60, 11, 1;
199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
1;
0, 1;
0, 3, 1;
0, 4, 4, 1;
0, 7, 9, 5, 1;
0, 11, 20, 15, 6, 1;
0, 18, 40, 40, 22, 7, 1;
-
function T(n,k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return Lucas(n+1);
else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
with(combinat);
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif k=n then 1
elif k=0 then fibonacci(n+2) + fibonacci(n)
else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
-
With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
a(29) corrected by and a(55)-a(65) from
Georg Fischer, Feb 18 2020
A181974
Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
Offset: 0
Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
Showing 1-4 of 4 results.
Comments