cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152883 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} in which k is an excedance (n >= 2, 1 <= k <= n-1). An excedance of a permutation p is a value j such that p(j) > j.

Original entry on oeis.org

1, 4, 2, 18, 12, 6, 96, 72, 48, 24, 600, 480, 360, 240, 120, 4320, 3600, 2880, 2160, 1440, 720, 35280, 30240, 25200, 20160, 15120, 10080, 5040, 322560, 282240, 241920, 201600, 161280, 120960, 80640, 40320, 3265920, 2903040, 2540160, 2177280, 1814400, 1451520, 1088640, 725760, 362880
Offset: 2

Views

Author

Emeric Deutsch, Jan 13 2009

Keywords

Comments

Sum of entries in row n = n!*(n-1)/2 = A001286(n) (the Lah numbers).
T(n,n-1) = (n-1)! (A000142).

Examples

			T(4,3) = 6 because the permutations of {1,2,3,4} in which 3 is an excedance are 1243, 1342, 3142, 2143, 2341 and 3241.
Triangle starts:
    1;
    4,   2;
   18,  12,   6;
   96,  72,  48,  24;
  600, 480, 360, 240, 120;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) options operator, arrow: factorial(n-1)*(n-k) end proc: for n from 2 to 10 do seq(T(n, k), k = 1 .. n-1) end do;

Formula

T(n,k) = (n-1)!*(n-k) (n >= 2, 1 <= k <= n-1). [Proof: n-k choices for p(k) and (n-1)! choices for the remaining entries of p.]