cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324225 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 6, 4, 2, 6, 12, 18, 24, 18, 12, 6, 24, 48, 72, 96, 120, 96, 72, 48, 24, 120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120, 720, 1440, 2160, 2880, 3600, 4320, 5040, 4320, 3600, 2880, 2160, 1440, 720, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 35280, 30240, 25200, 20160, 15120, 10080, 5040
Offset: 1

Views

Author

Alois P. Heinz, Feb 18 2019

Keywords

Comments

T(n,k) is the number of occurrences of k in all (signed) displacement lists [p(i)-i, i=1..n] of permutations p of [n].

Examples

			The 6 permutations p of [3]: 123, 132, 213, 231, 312, 321 have (signed) displacement lists [p(i)-i, i=1..3]: [0,0,0], [0,1,-1], [1,-1,0], [1,1,-2], [2,-1,-1], [2,0,-2], representing the indices of falling diagonals of 1's in the permutation matrices
  [1    ]  [1    ]  [  1  ]  [  1  ]  [    1]  [    1]
  [  1  ]  [    1]  [1    ]  [    1]  [1    ]  [  1  ]
  [    1]  [  1  ]  [    1]  [1    ]  [  1  ]  [1    ] , respectively. Indices -2 and 2 occur twice, -1 and 1 occur four times, and 0 occurs six times. So row n=3 is [2, 4, 6, 4, 2].
Triangle T(n,k) begins:
  :                             1                           ;
  :                        1,   2,   1                      ;
  :                   2,   4,   6,   4,   2                 ;
  :              6,  12,  18,  24,  18,  12,   6            ;
  :        24,  48,  72,  96, 120,  96,  72,  48,  24       ;
  :  120, 240, 360, 480, 600, 720, 600, 480, 360, 240, 120  ;
		

Crossrefs

Columns k=0-6 give (offsets may differ): A000142, A001563, A062119, A052571, A052520, A282822, A052521.
Row sums give A001563.
T(n+1,n) gives A000142.
T(n+1,n-1) gives A052849.
T(n+1,n-2) gives A052560 for n>1.
Cf. A152883 (right half of this triangle without center column), A162608 (left half of this triangle), A306461, A324224.
Cf. A001710.

Programs

  • Maple
    b:= proc(s, c) option remember; (n-> `if`(n=0, c,
          add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1-n..n-1))(b({$1..n}, 0)):
    seq(T(n), n=1..8);
    # second Maple program:
    egf:= k-> (t-> x^t/t*hypergeom([2, t], [t+1], x))(abs(k)+1):
    T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1-n..n-1), n=1..8);
    # third Maple program:
    T:= (n, k)-> (t-> `if`(t
    				
  • Mathematica
    T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)

Formula

T(n,k) = T(n,-k).
T(n,k) = (n-t)*(n-1)! if t < n with t = |k|, T(n,k) = 0 otherwise.
T(n,k) = |k|! * A324224(n,k).
E.g.f. of column k: x^t/t * hypergeom([2, t], [t+1], x) with t = |k|+1.
|T(n,k)-T(n,k-1)| = (n-1)! for k = 1-n..n.
Sum_{k=0..n-1} T(n,k) = A001710(n+1).

A213168 a(n) = n!/2 - (n-1)! - n + 2.

Original entry on oeis.org

0, 0, 4, 33, 236, 1795, 15114, 141113, 1451512, 16329591, 199583990, 2634508789, 37362124788, 566658892787, 9153720575986, 156920924159985, 2845499424767984, 54420176498687983, 1094805903679487982, 23112569077678079981, 510909421717094399980
Offset: 2

Views

Author

Olivier Gérard, Nov 02 2012

Keywords

Comments

Row sums of A142706 for k=1..n-1.

Crossrefs

Cf. A001286.
Cf. A200748 (considered as a triangular array).

Programs

  • Magma
    [Factorial(n)/2-Factorial(n-1)-n+2: n in [2..25]]; // Vincenzo Librandi, Sep 09 2016
  • Maple
    f:=gfun:-rectoproc({2*(n-3)*a(n) - (2*n^2-6*n+4)*a(n-1)- 2*(n-3)*(n-2)^2, a(2)=0,a(3)=0},a(n),remember): map(f, [$2..22]); # Georg Fischer, Aug 25 2021
  • Mathematica
    Table[n!/2 - (n - 1)! - n + 2, {n, 2, 20}]
  • Maxima
    A213168(n):=n!/2-(n-1)!-n+2$
    makelist(A213168(n),n,2,30); /* Martin Ettl, Nov 03 2012 */
    

Formula

a(n) = A001286(n-1) - n + 2. - Anton Zakharov, Sep 08 2016
D-finite with recurrence: 2*(n-3)*a(n) - (2*n^2-6*n+4)*a(n-1)- 2*(n-3)*(n-2)^2 = 0. - Georg Fischer, Aug 25 2021
E.g.f.: 1/(2-2*x)+log(1-x)+(2-x)*exp(x). - Alois P. Heinz, Aug 25 2021
Showing 1-2 of 2 results.