cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152886 Number of descents beginning and ending with an even number in all permutations of {1,2,...,n}.

Original entry on oeis.org

0, 0, 0, 6, 24, 360, 2160, 30240, 241920, 3628800, 36288000, 598752000, 7185024000, 130767436800, 1830744115200, 36614882304000, 585838116864000, 12804747411456000, 230485453406208000, 5474029518397440000, 109480590367948800000, 2810001819444019200000
Offset: 1

Views

Author

Emeric Deutsch, Jan 19 2009

Keywords

Examples

			a(7) = 2160 because (i) the descent pairs can be chosen in binomial(3,2) = 3 ways, namely (4,2), (6,2), (6,4); (ii) they can be placed in 6 positions, namely (1,2),(2,3),(3,4),(4,5),(5,6),(6,7); (iii) the remaining 5 entries can be permuted in 5! = 120 ways; 3*6*120 = 2160.
		

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 0 then factorial(n-1)*binomial((1/2)*n, 2) else factorial(n-1)*binomial((1/2)*n-1/2, 2) end if end proc: seq(a(n), n = 1 .. 22);
  • Mathematica
    a[n_] := (n - 1)! * Binomial[If[OddQ[n], (n - 1)/2, n/2], 2]; Array[a, 25] (* Amiram Eldar, Jan 22 2023 *)

Formula

a(2n) = (2n-1)!*binomial(n,2); a(2n+1) = (2n)!*binomial(n,2).
D-finite with recurrence +(-n+4)*a(n) +(n-1)*a(n-1) +(n-2)*(n-1)^2*a(n-2)=0. - R. J. Mathar, Jul 31 2022
Sum_{n>=4} 1/a(n) = 2*(CoshIntegral(1) - gamma - 3*e + 8) = 2*(A099284 - A001620 - 3 * A001113 + 8). - Amiram Eldar, Jan 22 2023