A152919 a(1)=1, for n>1, a(n) = n^2/4 + n/2 for even n, a(n) = n^2/4 + n - 5/4 for odd n.
1, 2, 4, 6, 10, 12, 18, 20, 28, 30, 40, 42, 54, 56, 70, 72, 88, 90, 108, 110, 130, 132, 154, 156, 180, 182, 208, 210, 238, 240, 270, 272, 304, 306, 340, 342, 378, 380, 418, 420, 460, 462, 504, 506, 550, 552, 598, 600, 648, 650, 700, 702, 754, 756, 810, 812, 868
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
a[n_] := If[n == 1, 1, If[Mod[n, 2] == 0, n^2/4 + n/2, n^2/4 + n - 5/4]]; Table[a[n], {n, 1, 100}]
Formula
From Chai Wah Wu, Jun 09 2020: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
G.f.: x*(x^5 - x^4 - x - 1)/((x - 1)^3*(x + 1)^2). (End)
From Bernard Schott, Jun 10 2020: (Start)
Bisections are:
a(1) = 1 and a(2k+1) = A028552(k) for k >= 1,
a(2k) = A002378(k) for k >= 1, hence,
a(2k+2) = a(2k+1) + 2 for k >= 1. (End)