cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152919 a(1)=1, for n>1, a(n) = n^2/4 + n/2 for even n, a(n) = n^2/4 + n - 5/4 for odd n.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 20, 28, 30, 40, 42, 54, 56, 70, 72, 88, 90, 108, 110, 130, 132, 154, 156, 180, 182, 208, 210, 238, 240, 270, 272, 304, 306, 340, 342, 378, 380, 418, 420, 460, 462, 504, 506, 550, 552, 598, 600, 648, 650, 700, 702, 754, 756, 810, 812, 868
Offset: 1

Views

Author

Roger L. Bagula, Dec 15 2008

Keywords

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, If[Mod[n, 2] == 0, n^2/4 + n/2, n^2/4 + n - 5/4]];
    Table[a[n], {n, 1, 100}]

Formula

From Chai Wah Wu, Jun 09 2020: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 6.
G.f.: x*(x^5 - x^4 - x - 1)/((x - 1)^3*(x + 1)^2). (End)
From Bernard Schott, Jun 10 2020: (Start)
Bisections are:
a(1) = 1 and a(2k+1) = A028552(k) for k >= 1,
a(2k) = A002378(k) for k >= 1, hence,
a(2k+2) = a(2k+1) + 2 for k >= 1. (End)