A152951 Complementary von Staudt prime numbers.
71, 131, 191, 251, 311, 419, 431, 491, 599, 683, 743, 911, 947, 971, 1031, 1091, 1103, 1151, 1163, 1427, 1451, 1511, 1559, 1571, 1583, 1607, 1667, 1811, 1871, 1931, 1979, 2003, 2111, 2267, 2351, 2399, 2411, 2423, 2531, 2543, 2591, 2663, 2711, 2843, 2927, 2939
Offset: 0
Links
- Dana Jacobsen, Table of n, a(n) for n = 0..10883
- Peter Luschny, Von Staudt prime number, definition and computation.
Crossrefs
Cf. A092307.
Programs
-
Maple
select(j->(denom(bernoulli(j-1)/(j-1))<>12*j),select(isprime,[seq(12*k-1,k=1..100)]));
-
Mathematica
Select[ 12*Range[200] - 1, PrimeQ[#] && 12 # != Denominator[ BernoulliB[# - 1]/(# - 1)]& ] (* Jean-François Alcover, Jul 29 2013 *)
-
Perl
use ntheory ":all"; forprimes { my $p=$; say if $ % 12 == 11 && vecany { $ > 3 && $ < $p-1 && is_prime($+1) } divisors($p-1); } 10000; # _Dana Jacobsen, Dec 29 2015
-
Perl
use ntheory ":all"; forprimes { say if $ % 12 == 11 && (bernfrac($-1))[1] != 6*$; } 10000; # _Dana Jacobsen, Dec 29 2015
Extensions
More terms from Dana Jacobsen, Dec 29 2015
Comments