A152982 Sum of proper divisors of Motzkin number A001006(n).
0, 0, 1, 3, 4, 11, 21, 1, 37, 173, 1648, 3610, 1, 25125, 139086, 474576, 284493, 984021, 6536394, 24265740, 18678381, 96214041, 277799337, 1282283505, 2077807083, 1899874619, 19252363864, 44221482398, 1967547359, 29743945411, 1265868629
Offset: 0
Keywords
Examples
a(6)=21 because A001006(6)=51, having as proper divisors 1, 3 and 17. - _Emeric Deutsch_, Dec 31 2008
Links
- Amiram Eldar, Table of n, a(n) for n = 0..200
Programs
-
Maple
with(numtheory): M := proc (n) options operator, arrow: sum(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. n) end proc: seq(sigma(M(n))-M(n), n = 0 .. 30); # Emeric Deutsch, Dec 31 2008
-
Mathematica
mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; propDivSum[n_] := DivisorSigma[1, n] - n; Table[propDivSum[mot[n]], {n, 0, 30}] (* Amiram Eldar, Nov 26 2019 *)
Extensions
Extended by Emeric Deutsch, Dec 31 2008