A153787 Largest proper divisor of Motzkin number A001006(n).
1, 2, 3, 7, 17, 1, 19, 167, 1094, 2899, 1, 13945, 56817, 155286, 284489, 785593, 3268191, 9099642, 16950673, 47515853, 133587741, 376586805, 1064242599, 1291914643, 12834909238, 36503886401, 1944142787, 19152993059, 1144562017
Offset: 2
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 2..200
Programs
-
Maple
with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(divisors(M(i))[tau(M(i))-1], i = 2 .. 32); # Emeric Deutsch, Jan 18 2009
-
Mathematica
mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; lpd[n_] := n / FactorInteger[n][[1, 1]]; Table[lpd[mot[n]], {n, 2, 30}] (* Amiram Eldar, Nov 26 2019 *)
Extensions
Extended by Emeric Deutsch, Jan 18 2009
a(23)-a(27) and a(29)-a(30) corrected by Amiram Eldar, Nov 26 2019
Comments