A152983 Number of divisors of Motzkin number A001006(n).
1, 1, 2, 3, 3, 4, 4, 2, 4, 4, 6, 8, 2, 8, 24, 18, 4, 16, 8, 12, 16, 24, 48, 72, 12, 8, 6, 16, 8, 16, 8, 12, 4, 16, 64, 12, 2, 8, 8, 8, 8, 24, 96, 96, 6, 24, 72, 48, 24, 32, 128, 96, 16, 8, 8, 8, 16, 128, 60, 192, 6, 32, 32, 96, 8, 96, 512, 36, 24, 16, 24, 384, 24, 96, 144, 48, 64, 64, 32
Offset: 0
Keywords
Examples
a(5)=4 because the Motzkin number M(5)=21 has 4 divisors: 1,3,7 and 21. - _Emeric Deutsch_, Jan 14 2009
Links
- Amiram Eldar, Table of n, a(n) for n = 0..200
Programs
-
Maple
with(numtheory): M := proc (n) options operator, arrow: (sum((-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n), j = 0 .. floor((1/3)*n)))/(n+1) end proc: seq(tau(M(n)), n = 0 .. 82); # Emeric Deutsch, Jan 14 2009
-
Mathematica
mot[0] = 1; mot[n_] := mot[n] = mot[n - 1] + Sum[mot[k] * mot[n - 2 - k], {k, 0, n - 2}]; Table[DivisorSigma[0, mot[n]], {n, 0, 50}] (* Amiram Eldar, Nov 26 2019 *)
Extensions
Extended by Emeric Deutsch, Jan 14 2009